Digital Signal Processing Discrete Time Signal & **Systems** Lecture-2 16-March-16

Discrete-Time Systems

It is a transformation or operator that maps an input \circ sequence $\{x[n]\}$ to an output sequence $\{y[n]\}$.

Where T(.) define different classes of systems. \circ

Basic System Properties

Systems with or without memory: \bigcirc

- A system is said to be memory less if the output for each \bigcap value of the independent variable at a given time n depends only on the input value at time n.
	- \bigcap E.g., y[n] = cos (x[n])+3 is memory less.
	- Ω A particularly simple memory less system is the identity system defined by: $y[n]=x[n]$.
- Not all systems are memory less. A simple example of \circ system with memory is a delay defined by: $y[n] = x[n-1]$.
- A system with memory retains or stores information \bigcirc about input values at times other than the current input value.

Invertibility: \bigcirc

- A system is said to be invertible if the input signal {x[n]} can \bigcirc be recovered from the output signal {y[n]}.
- For this to be true two different input signals should produce \bigcap two different outputs.
- If some different input signal produce same output signal \bigcap then by processing output we can not say which input produced the output. *n*

$$
\bigcirc \text{ E.g., } y[n] = \sum_{k=-\infty} x[k]
$$

 \bigcap Then, $x[n] = y[n] - y[n-1]$

For example if a non-invertible system is: $y[n]=0$ \bigcap

Invertibility: (cont.) \bigcirc

- The system produces an all zero sequence for any input \bigcap sequence.
- Since every input sequence gives all zero sequence. \bigcirc
- We cannot find out which input produced the output. \bigcap
- The system which produces the sequence {x[n]} form \bigcirc sequence {y[n]} is called the inverse system.

Casuality: \bigcirc

- A system is casual if the output at anytime depends only on values of the input at the present time and in the past. E.g., $y[n] = f(x[n],x[n-1],...)$
- All memory less systems are casual. \bigcirc
- *N* The system defined by: $y[n] = \frac{1}{2N+1} \sum_{k=-N}^{N} x[n-k]$ is non-casual. \bigcirc ∑*x*[*n* − *k*] *k*=−*N*

Stability: \bigcirc

- A system is said to be BIBO stable if every bounded input produces a bounded output.
- The signal $x[n]$ is bounded if: $|x[n]| \le M \le \infty$, for all n. \bigcirc
- *N* $y[n] = \frac{1}{2N}$ ∑ *x*[*n*] The moving average system $y_1^{n_1} - \frac{y_1^{n_2} - \frac{y_1^{n_1} - \frac{y_1^{n_1}}{n_1}}{2N+1}$ is stable \bigcirc 2*N* +1 *k*=−*N* as y[n] is sum of finite numbers and so it is bounded. *n* The system defined by $y[n] = \sum x[k]$ is unstable. ∑ \circ *k*=−∞

Time Invariance: \bigcirc

- A system is said to be time invariant if the behavior and characteristics of the system do not change with time.
- Thus a system is said to be time invariant if a time delay \bigcirc or time advance in the input signal leads to identical delay or advance in the output signal.
- Mathematically if: \bigcirc

 $\{y[n]\} = T(\{x[n]\})$

then $\{y[n-n_0]\} = T(\{x[n-n_0]\})$ *for any n*₀

Linearity: \bigcirc

- Is a system satisfies the property of homogeneity and the \bigcap property of superposition, the system is said to be linear.
- Homogeneity: \bigcirc
	- \bigcirc Let the system produce an output y(t) for an input x(t).
	- \bigcirc If the input is scaled 'a' times, the output will also be scaled 'a' times for all values of 'a' and x(t).
	- O Mathematically we can write as follows:

if $x(t)$ → $y(t)$ $ax(t) \rightarrow ay(t)$

Linearity: \bigcirc

- Superposition: \bigcirc
	- \bigcap If two inputs $x_1(t)$ and $x_2(t)$ are applied to a system simultaneously, the overall output will be the effects of $x_1(t)$ and $x_2(t)$. $x_1(t) + x_2(t) \to y_1(t) + y_2(t)$
	- O Combining these properties we can write following for the linear system: *if* $x_1(t) \rightarrow y_1(t)$ *and* $x_2(t) \rightarrow y_2(t)$, *then*

 $ax_1(t) + ax_2(t) \rightarrow ay_1(t) + ay_2(t)$

Non-Linear System: \bigcirc

If any system does not satisfy the above two conditions, \bigcirc the system is called as non-linear.

Linear Time Variant & Linear Time Invariant: \bigcirc

- If a system is both linear and time variant, then it is \bigcap known as linear time variant system.
- If a system is both linear and time invariant then \bigcirc such a system is known as linear time invariant system.

Convolution Sum

The property of time invariance implies that if h[n] is the response to \bigcirc δ [n], then the response to δ [n-k] is h[n-k]. Hence,

$$
y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]
$$

- A linear time invariant system is completely characterized by its \bigcap impulse response h[n] in the sense that, given h[n], it is possible to use above equation to compute the output $y[n]$ due to any input $x[n]$.
- The above equation is called the convolution sum. \bigcirc
- $y[n]$ is the convolution of $x[n]$ with $h[n]$ and represents this by the \bigcirc notation: $y[n] = x[n]^*h[n]$.
- The operation of discrete-time convolution takes two sequences $x[n]$ \bigcap and h[n] and produces a third sequence y[n].

Example #1

Consider a system with impulse response: \bigcirc $h[n] = u[n] - u[n-N]$ \lceil $=\begin{cases} 1, & 0 \le n \le N-1 \\ 0, & 1 \end{cases}$ \vert ⎨ 0, *otherwise* $\overline{\mathfrak{l}}$

The input is $x[n]=a^n u[n]$ \bigcirc

Example #1 (cont.)

Solution: \bigcirc

 $y[n] =$ $0, \qquad n < 0$ $1 - a^{n+1}$ 1− *a* , $0 \le n \le N-1$ $a^{n-N+1} \left(\frac{1-a^N}{1-a} \right)$ 1− *a* $\sqrt{2}$ ⎝ $\left(\frac{1-a^N}{1-a}\right)$ $\overline{ }$ ⎟, *N* −1< *n* $\left\{ \right\}$ ⎪ $\mathbf \mathbf I$ $\mathsf I$ \lfloor ⎪ ⎪ ⎪ ⎪

DT Impulse Response of LTI System

- If the linearity property is combined with the \bigcirc representation of a general sequence as a linear combination of delayed impulses.
- A linear system can be completely characterized by its \circ impulse response.
- Let $x[n]$ be the input signal and $y[n]$ be the output \bigcirc sequence and T() represent the linear system. $y[n] = T(x[n])$

$$
=T\left(\sum_{k=-\infty}^{\infty}x[k]\delta[n-k]\right)
$$

DT Impulse Response of LTI System (cont.)

From the principle of superposition we can write: \bigcirc

$$
y[n] = \sum_{k=-\infty}^{\infty} x[k]T\{\delta[n-k]\} = \sum_{k=-\infty}^{\infty} x[k]h_k[n]
$$

- The system response to any input can be expressed in terms \bigcap of the responses of the system to the sequence δ [n-k].
- If only linearity is imposed, $h_k[n]$ will depend on both n and \bigcirc k, in which case the computational usefulness is limited.
- The more useful result is obtained if the additional \bigcap constraint of time invariance is imposed.

DT Impulse Response of LTI System (cont.)

- The property of time invariance implies that if h[n] is the \bigcirc response to δ [n], then the response to δ [n-k] is h[n-k].
- With this additional constraint the above equation becomes: \bigcirc ∞ ∑*y*[*n*] = *x*[*k*]*h*[*n* − *k*] *k*=−∞
- A LTI system is completely characterized by its impulse \bigcirc response h[n] and it is possible to use above equation to compute $y[n]$ due to any input $x[n]$.
- And above equation is called the convolution sum. \bigcirc

Properties of LTI System

Commutative Property: \bigcirc

Convolution operation is commutative: \bigcap $x[n] * h[n] = h[n] * x[n]$

Distributive Property: \bigcap

Convolution operation also distributes over addition: \bigcirc $x[n] * (h_1[n] + h_2[n]) = x[n] * h_1[n] + x[n] * h_2[n]$

Associative Property: \bigcirc

 $x[n] * (y[n] * z[n]) = (x[n] * y[n]) * z[n]$

Properties of LTI System (cont.)

- **Identity:** \bigcirc $x[n] * \delta[n] = x[n]$
- **Delay Operation:** \bigcirc $x[n]*\delta[n-k]=x[n-k]$
- **Multiplication by a Constant:** \bigcirc

$$
\{ax[n]\} * \{y[n]\} = a(x[n] * y[n])
$$

Cascading

- All above mentioned properties can be represented in \circ cascade connection of systems.
- In a cascade connection of systems, the output of the \bigcirc first system is the input to the second, the output of the second is the input to the third, etc.
- The output of the last system is the overall output. \bigcirc

Cascading (cont.)

Commutative Property: \bigcirc

Cascading (cont.)

Distributive Property: \circ

Cascading (cont.)

- In a parallel connection, the systems have the same \bigcirc input and their outputs are summed to produce and overall output.
- It follows from the distributive property of convolution \circ that the connection of two LTI systems in parallel is equivalent to a single system whose impulse response is the sum of the individual impulse responses; i.e., $h[n]=h_1[n]+h_2[n]$

Linear Constant-Coefficient Difference Equations

An important subclass of LTI system consists of those \circ system for which the input and the output satisfy an Nth order linear constant-coefficient difference equation of the form: *N M* $\sum a_k y[n-k] = \sum b_m x[n-m]$ ∑ $a_k y[n-k]$ *k*=0 *m*=0

Example #2

For the given pairs of sequences determine the output \circ with the help of convolution:

Example #2 (cont.)

Solution: \circ

Example #3

Consider a casual system for which the input x[n] and \bigcirc the output $y[n]$ are related by the linear constant coefficient difference equation:

$$
y[n] - \frac{1}{2}y[n-1] = x[n] + \frac{1}{2}x[n-1]
$$

- a) Determine the unit sample response of the system.
- b) Using your result and the convolution sum determine the response to the input: $x[n] = e^{j\omega n}$

Example #3 (cont.)

- Solution: \circ
	- a) Rewriting the difference equation with $x[n] = \delta[n]$ and h[n] denoting the unit sample response:

$$
h[n] = \frac{1}{2}h[n-1] + \delta[n] + \frac{1}{2}\delta[n-1]
$$

Since the system is casual, h(n) is zero for n<0. For n<20,

$$
h(0) = \frac{1}{2}h[-1] + \delta[0] + \frac{1}{2}\delta[-1] = 1
$$

$$
h[1] = \frac{1}{2}h[0] + \delta[1] + \frac{1}{2}\delta[0] = 1
$$

$$
h[2] = \frac{1}{2}h[1] + \delta[2] + \frac{1}{2}\delta[1] = \frac{1}{2}
$$

$$
h[n] = 2\left(\frac{1}{2}\right)^n \quad n \ge 1
$$

n ≥1

2

 $\overline{ }$

⎝

Example #3 (cont.)

h[n] can also be expressed as: \bigcirc

$$
h[n] = \left(\frac{1}{2}\right)^n \left[u(n) + u(n-1)\right]
$$

b) Substituting x[n] and h[n] into the convolution sum we obtain: $y[n] = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^k$

$$
y[n] = \sum_{k=-\infty}^{\infty} \left(\frac{1}{2}\right) \left[u(k) + u(k-1)\right] e^{j\omega(n-k)}
$$

$$
= e^{j\omega n} \left[\sum_{k=0}^{\infty} \left(\frac{1}{2} \right)^k e^{-j\omega k} + \sum_{k=1}^{\infty} \left(\frac{1}{2} \right)^k e^{-j\omega k} \right]
$$

$$
= e^{j\omega n} \left[\frac{1 + \frac{1}{2} e^{-j\omega}}{1 - \frac{1}{2} e^{-j\omega}} \right]
$$

Example #4

 γ y(n) – 0.4 y(n-1) = x(n). Find the casual impulse response? $h(n)=0$ n < 0.

Solution: \bigcirc

$$
h[n] = 0.4h[n-1] + \delta[n]
$$

\n
$$
h[0] = 0.4h[-1] + \delta[0] = 1
$$

\n
$$
h[1] = 0.4h[0] + \delta[1] = 0.4
$$

\n
$$
h[2] = 0.4^{2}
$$

\n
$$
h[n] = 0.4^{n} \text{ for } n \ge 0
$$