Digital Signal Processing Fourier Transform-I

Lecture-3 22-March-16

Discrete Time Fourier Transform

- A discrete time signal can be represented in the \circ frequency domain using z-transform or discrete time Fourier transform.
- The Fourier transform of a discrete time signal is called \bigcap discrete time Fourier transform (DTFT).
- \bigcap If x[n] is the given discrete time sequence then $X(\omega)$ or $X(e^{j\omega})$ is the discrete time Fourier transform of $x(n)$. i.e., ∞

$$
X\left(e^{j\omega}\right) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}
$$

Discrete Time Fourier Transform (cont.) The inverse DTFT of $X(e^{j\omega})$ is defined as : \circ

$$
x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega
$$

Derivation of DTFT

- x[n] is aperiodic and of finite duration. \bigcirc
- $\bigcap x[n]=0$ if $|n|\geq N/2$
	- N is large enough: \bigcirc

 $x'[n]=x[n]$ for $|n|\leq N/2$ and periodic with period N \circ $x'[n]=x[n]$ for any n as N $\rightarrow \infty$ \bigcirc

DTFS Pairs

$$
\tilde{x}[n] = \sum_{k \in \langle N \rangle} a_k e^{jk\omega_0 n}, \quad \omega_0 = \frac{2\pi}{N} \quad DTFS \quad Synthesis \quad eq.
$$

$$
a_k = \frac{1}{N} \sum_{n=\langle N \rangle} \tilde{x}[n] e^{-jk\omega_0 n}, \quad \omega_0 = \frac{2\pi}{N} \quad DTFS \quad Analysis \quad eq.
$$

$$
=\frac{1}{N}\sum_{n=-N_1}^{N_2}\tilde{x}[n]e^{-jk\omega_0n}=\frac{1}{N}\sum_{n=-\infty}^{\infty}x[n]e^{-jk\omega_0n}
$$

$$
=\frac{1}{N}X(e^{jk\omega_0})
$$

where
$$
X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}
$$

DTFS Pairs

$$
\tilde{x}[n] = \sum_{k=\langle N \rangle} \frac{1}{N} X(e^{jk\omega_0}) e^{jk\omega_0 n} = \frac{1}{2\pi} \sum_{k=\langle N \rangle} X(e^{jk\omega_0}) e^{jk\omega_0 n} \omega_0
$$

As $N \to \infty$: $\tilde{x}[n] \to x[n]$ for every n
 $\omega_0 \to 0$, $\sum \omega_0 \to \int d\omega$
Thus, $x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$

The limit of integration is over any interval of 2π in ω . \bigcirc ∞ $X(e^{j\omega}) = \sum x[n]e^{-j\omega n}$ Periodic in ω with period 2π . *n*=−∞

Discrete Time Fourier Transform

 \circ

$$
x[n] \leftrightarrow X(e^{j\omega})
$$

$$
X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}
$$

∑ Analysis Equation (Fourier Transform)

$$
x[n] = \frac{1}{2\pi} \int_{2\pi}^{\infty} X(e^{j\omega}) e^{j\omega n} d\omega
$$

Synthesis Equation (Inverse Fourier Transform)

Discrete Time Fourier Transform (cont.)

Fourier transform of a signal in general is a complex \bigcirc valued function: i.e.,

 $X(e^{j\omega}) = X_R(e^{j\omega}) + jX_I(e^{j\omega})$

- Where $X_R(e^{j\omega})$ is the real part of $X(e^{j\omega})$ and $X_I(e^{j\omega})$ is imaginary part of the function $X(e^{j\omega})$.
- Polar form is: \bigcap

 $\angle X\left(e^{j\omega}\right)$ $X(e^{j\omega}) = |X(e^{j\omega})|e^{j\omega}$ Where $|X(e^{j\omega})|$ is magnitude and $\langle X(e^{j\omega})\rangle$ is the phase. \circ

Existence of DTFT

- The Fourier transform exists for a discreet time sequence x[n] if and only if the sequence is absolutely summable.
	- The sequence has to satisfy the condition: \bigcap

- The DTFT does not exist for the sequences that are growing \bigcap exponentially (e.g. $a^n u(n)$, $a > 1$) since they are not absolutely summable.
- This method can be applied only to stable systems and not for \bigcirc unstable systems.
- That is DTFT can be used only for systems whose function \bigcirc H(z) has poles inside the unit circle.

Difference b/w Discrete Time and Analog Signal

The difference b/w the Fourier transform of a discrete \bigcirc time signal and analog signal are as follows:

Example #1

If we put analysis equation into the synthesis equation \bigcirc we indeed get {x[n]}:

O Let:
$$
\hat{x}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{m=-\infty}^{\infty} x[m] e^{-j\omega m} \right) e^{j\omega n} d\omega
$$

Under the assumption that sequence $\{x[n]\}$ is absolutely \bigcirc summable we can interchange the order of integration and summation. Thus: ∞ π

$$
\hat{x}[n] = \sum_{m=-\infty}^{\infty} x[m] \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{+j\omega(n-m)} d\omega \right)
$$

If
$$
m = n
$$
 then $e^{+j\omega(n-m)} = 1$

and
$$
\frac{1}{2\pi} \int_{-\pi}^{\pi} 1 d\omega = 1
$$

Example #1 (cont.) If $m \neq n$ then $e^{+j\omega(n-m)} = \cos \omega(n-m) + j\sin \omega(n-m)$

$$
\frac{1}{2\pi}\int_{-\pi}^{\pi}e^{+j\omega(n-m)}d\omega = \frac{1}{2\pi}\int_{-\pi}^{\pi}\cos\omega(n-m)d\omega + \frac{j}{2\pi}\int_{-\pi}^{\pi}\sin\omega(n-m)d\omega
$$

$$
=\frac{1}{2\pi}\frac{\sin\omega(n-m)}{(n-m)}\Bigg|_{-\pi}^{\pi}+\frac{j}{2\pi}\frac{\cos\omega(n-m)}{(n-m)}\Bigg|_{-\pi}^{\pi}=0
$$

- Thus there is only one non zero term in R.H.S so we get \bigcap $x^{\prime}[n]=x[n].$
- This is true for all values of n and so synthesis equation is indeed a \bigcirc representation of signal in terms of Eigen functions $\{e^{j\omega n}\}$.

Example #2

Let $\{x[n]\}$ = $\{a^n u[n]\}$, Fourier transform of this equation \circ will exist if it is absolutely summable. We have:

$$
\sum_{n=-\infty}^{\infty} |x[n]| = \sum_{n=0}^{\infty} |a|^n
$$

This is a geometric series and sum exists if $|a|$ <1, in \bigcirc that case: $\sum |a|^n = \frac{1}{1-1}$ $+$ ∞

 $1 - |a|$

Thus the Fourier transform of the sequence $\{a^n u[n]\}$ \bigcirc exists if |a|<1 . The Fourier transform is:

Example #2 (cont.)

$$
X\left(e^{j\omega}\right) = \sum_{n=0}^{\infty} e^{-j\omega n}
$$

It exists if $|ae^{j\omega_n}| \le 1$ i.e., $|a| \le 1$. \circ

Convergence

Absolute summability is a sufficient condition for the \circ existence of a Fourier transform. Fourier transform also exists for square summable sequence:

$$
\sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty
$$

- For such signals the convergence is not uniform. \bigcirc
- This has implications in the design of discrete system \circ for filtering.

Properties of Impulse Function

The impulse function is defined by the following \bigcirc properties:

$$
(a) \quad \int_{-\infty}^{\infty} \delta(\omega) d\omega = 1
$$

 $\int X(e^{j\omega})\delta(\omega-\omega_0)d\omega$ −∞ ∞ $\int X(e^{j\omega})\delta(\omega-\omega_0)d\omega=X(e^{j\omega_0})$ If $X(e^{j\omega})$ is continuous at $\omega = \omega_0$ (shifting or convolution property)

(c)
$$
X(e^{j\omega})\delta(\omega) = X(e^{j\omega})\delta(\omega)
$$
 If $X(e^{j\omega})$ is continuous at $\omega = 0$

For Example

(a)
$$
X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} 2\pi\delta(\omega + 2\pi k)
$$

(b)
$$
X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k), \quad -\pi < \omega_0 \le \pi
$$

Properties of DTFT

Periodicity of the DTFT: \circ

DTFT $X(e^{j\omega})$ is a periodic function of ω with period \bigcap 2π.

Linearity of the DTFT: \bigcirc

If: \bigcap

$$
\{x[n]\} \leftrightarrow X\big(e^{j\omega}\big)
$$

And: \bigcap

 \bigcap

$$
\{y[n]\} \leftrightarrow Y(e^{j\omega})
$$

Then:

 $a\{x[n]\}$ + $b\{y[n]\}$ \Leftrightarrow $aX(e^{j\omega})$ + $bY(e^{j\omega})$

- **Conjugation of the Signal**: \bigcirc If: \bigcap $\{x[n]\} \leftrightarrow X(e^{j\omega})$
	- Then: \bigcap $\{x^*[n]\} \leftrightarrow X^*(e^{-j\omega})$

n=−∞

Where * denotes the complex conjugate. We have DTFT \bigcirc of $\{x^*[n]\}$: ∞ ∞ ∗ $\sum x^* [n] e^{-j\omega n} = \sum [x[n] e^{j\omega n}]$ ∑ *x* ∗ [*n*]*e*[−] *^j*ω*ⁿ*

$$
= \left[\sum_{n=-\infty}^{\infty} x[n]e^{-j(-\omega)n}\right]^*
$$

= $X^*(e^{-j\omega})$

n=−∞

Time Reversal: \bigcirc $\{x[-n]\} \leftrightarrow X(e^{-j\omega})$

The DTFT of the time reversal sequence is: \bigcirc

$$
\sum_{n=-\infty}^{\infty} x[-n]e^{-j\omega n}
$$

Let us change the index of summation as m= -n: \bigcirc

$$
= \sum_{m=-\infty}^{\infty} x[m] e^{j\omega m} = X(e^{-j\omega})
$$

- **Time Shifting & Frequency Shifting**: \bigcap $\{x[n-n_0]\}\leftrightarrow e^{-j\omega n_0}X(e^{j\omega})$ $\{e^{j\omega_0 n}x[n]\} \leftrightarrow X(e^{j(\omega-\omega_0)})$
- **Symmetry Properties of the Fourier Transform**: \bigcap

\n- \n
$$
f[x[n]]
$$
 is real valued than:\n $X(e^{j\omega}) = X^*(e^{-j\omega})$ \n
\n- \n $f[x[n]] = x^*[n]$, so $\{x[n]\} = \{x^*[n]\}$ and hence:\n $X(e^{j\omega}) = X^*(e^{-j\omega})$ \n
\n- \n Expressing $X(e^{j\omega})$ in real and imaginary parts we see that:\n $X_R(e^{j\omega}) + jX_I(e^{j\omega}) = X_R(e^{-j\omega}) - jX_I(e^{-j\omega})$ \n
\n

Symmetry Properties of the Fourier Transform: \bigcirc (cont.)

$$
\bigcirc \quad \text{Which implies:} \quad X_R(e^{j\omega}) = X_R(e^{-j\omega})
$$
\n
$$
\text{and} \quad X_I(e^{j\omega}) = -X_I(e^{-j\omega})
$$

- That is real part of the Fourier transform is an even \bigcirc function of ω and imaginary part is an odd function of ω .
- The magnitude spectrum is given by: \bigcirc

 $X(e^{j\omega}) = \sqrt{X_R^2(e^{j\omega}) + X_I^2(e^{j\omega})} = \sqrt{X_R^2(e^{-j\omega}) + X_I^2(e^{-j\omega})} = X(e^{-j\omega})$

- **Symmetry Properties of the Fourier Transform**: \circ (cont.)
	- The phase spectrum is given by: \bigcirc

$$
\angle X(e^{j\omega}) = \tan^{-1} \frac{X_I(e^{j\omega})}{X_R(e^{j\omega})}
$$

$$
= \tan^{-1} \frac{-X_I(e^{-j\omega})}{X_R(e^{-j\omega})}
$$

$$
= -\tan^{-1} \frac{X_I(e^{-j\omega})}{X_R(e^{-j\omega})}
$$

$$
= -\angle X(e^{-j\omega})
$$

- **Differencing & Summation**: \bigcirc $\left\{ x[n]-x[n-1] \right\} \leftrightarrow \left(1-e^{-j\omega} \right) X(e^{j\omega})$
- **Differentiation in Frequency Domain**: \bigcap ∞ $X(e^{j\omega}) = \sum x[n]e^{-j\omega n}$ ∑ *n*=−∝

Differentiating both sides with respect to ω , we obtain \bigcirc

$$
\frac{d}{d\omega}X\left(e^{j\omega}\right)=\sum_{n=-\infty}^{\infty}-jnx\big[n\big]e^{-j\omega n}
$$

Multiplying both sides by j we obtain \bigcirc $\{nx[n]\} \leftrightarrow j\frac{d}{d\epsilon}$ $X\!\left(e^{\,j\omega}\right)$ *d*^ω

Parseval's Relation: \bigcirc

$$
\sum_{n=-\infty}^{\infty} \left| x \left[n \right] \right|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| X \left(e^{j\omega} \right) \right|^2 d\omega
$$

We have: \bigcap

$$
\sum_{n=-\infty}^{\infty} \left| x[n] \right|^2 = \sum_{n=-\infty}^{\infty} x[n] \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} X(e^{j\omega}) e^{j\omega n} d\omega \right]^*
$$

Interchanging summation and integration we get: \bigcirc

$$
= \frac{1}{2\pi} \int_{-\pi}^{\pi} X^* (e^{j\omega}) \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} d\omega
$$

$$
= \frac{1}{2\pi} \int_{-\pi}^{\pi} X^* (e^{j\omega}) X(e^{j\omega}) d\omega
$$

$$
= \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega
$$