Digital Signal Processing Z-Transform-I

Lecture-5 30-March-16

Introduction

- Z-transform is a useful tool in the analysis of discretetime signals and systems.
- It is the discrete time counterpart of the Laplace \circ transform for continuous-time signal and systems.
- It can be used to solve constant coefficient difference \circ equations, evaluate the response of a linear timeinvariant system to a given input and design linear filters.

Z-Transform

The z-transform of a sequence x[n] is defined as: \bigcirc ∞ $X(z) = \sum x[n]z^{-n}, \rightarrow eq(1)$

Where $z = re^{j\omega}$ is a complex variable.

Above equation can be considered as an operator that transforms a sequence into a function, and we will refer to the z-transform operator Z(.) defined as:

$$
Z\left\{x[n]\right\} = \sum_{n=-\infty}^{\infty} x[n]z^{-n} = X(z)
$$

The values of z for which the sum converges define a region \bigcap in the z-plane referred to as region of convergence (ROC).

Z-Transform

- The correspondence between a sequence and its z- \bigcirc transform is indicated by the notation: *Z* $x[n] \leftrightarrow$ *X*(*z*)
- The z-transform defined in eq.(1) is referred to as the two-sided or bilateral z-transform, in contrast to the one sided or unilateral z-transform which is defined as:

$$
X(z) = \sum_{n=0}^{\infty} x[n] z^{-n}
$$

Relation b/w Z-Transform & DTFT

- There is a close relation between the two. \bigcap
- If complex variable z is replaced with the complex variable \bigcirc $e^{j\omega}$, then the z-transform reduces to the Fourier transform.
- When Fourier transform exists, the Fourier transform is \bigcirc simple $X(z)$ with $z=e^{j\omega}$.
- This corresponds to restricting z to have unity magnitude \circ i.e., for $|z|=1$, the z-transform corresponds to the Fourier transform.
- The complex variable z in polar form can be expressed as: \circ $z = re^{j\omega}$.

Relation b/w Z-Transform & DTFT (cont.)

The eq.(1) becomes: \bigcirc

$$
X(re^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n](re^{j\omega})^{-n}
$$

or

$$
X(re^{j\omega})=\sum_{n=-\infty}^{\infty} \bigl(x[n]r^{-n}\bigr)\bigl(e^{-j\omega n}\bigr)
$$

We see that $X(z)$ is the discrete time Fourier transform \circ of the sequence r^n x[n]. When $r=1$ it reduces to the Fourier transform of x[n].

Region of Convergence (ROC)

- It is convenient to interpret z transform using the \bigcirc complex z-plane.
- In the z-plane, the contour corresponding to $|z|=1$ is a \bigcirc circle of unit radius and the contour is referred to as the unit circle.

Region of Convergence (ROC) (cont.)

ROC is determined by the range of values of e for which: \bigcirc

$$
\sum_{n=-\infty}^{\infty} |x[n]r^{-n}| < \infty \to eq(2)
$$

And: $z = \text{Re}(z) + j \text{Im}(z) = re^{j\omega}$

 \bigcap

- The axes of z-plane are the real and imaginary parts of z. \bigcap
- The z-transform evaluated on the unit circle corresponds to the DTFT : \bigcap

$$
X\left(e^{j\omega}\right) = X\left(z\right)\Big|_{z=e^{j\omega}}
$$

The set of values of z for which the z-transform converges is called the region \bigcirc of convergence.

Region of Convergence (ROC) (cont.)

- \bigcirc Evaluating $X(z)$ at points around the unit circle, beginning at z=1 (ω =0) through z=j (i.e., $\omega = \pi/2$) to z=-1 (i.e., $\omega = \pi$).
- We obtain values of $X(e^{j\omega})$ for $0\leq \omega \leq \pi$. \bigcap
- Note: In order for the DTFT of a signal to exist, the unit \bigcirc circle must be within the ROC of $X(z)$.
- In eq.(2) the multiplication of complex variable z by the real \circ exponential r^n , it is possible for the z-transform to converge even if the Fourier transform does not.
- X(z) is a rational function inside the ROC, i.e., \bigcirc

$$
X(z) = \frac{P(z)}{Q(z)}
$$

Region of Convergence (ROC) (cont.)

- Where $P(z)$ and $Q(z)$ are polynomials in z. \bigcirc
- The values of z for which $X(z)=0$ are called the zeroes of $X(z)$. \bigcap
- The values for which $X(z)$ is infinite are referred to as the \bigcap poles of $X(z)$.
- The poles of $X(z)$ for finite values of z are the roots of the \bigcirc denominator polynomial.
- The poles and zeroes uniquely define the functional form of \bigcirc a rational z-transform to within a constant.

Properties of ROC

- Property 1: \bigcirc
	- The ROC is a ring or disk in the z-plane centered at the origin, \bigcirc i.e., $0 \le r_R < |z| < r_L \le \infty$.
- Property 2: \bigcirc
	- The Fourier transform of x[n] converges absolutely if and only if \bigcirc the ROC of the z-transform of $x[n]$ includes the unit circle.
- Property 3: \bigcirc
	- The ROC cannot contain any poles. \bigcirc
- Property 4: \bigcirc
	- If x[n] is a finite duration sequence, i.e., a sequence that is zero \bigcap except in a finite interval $-\infty < N_1 \le n \le N_2 < \infty$, then the ROC is the entire z-plane, except possibly $z=0$ or $z=\infty$.

Properties of ROC (cont.)

- Property 5: \bigcirc
	- If x[n] is a right-sided sequence, i.e., a sequence that is \bigcirc zero for $n \le N_1 \le \infty$, the ROC extends outwards from the outermost (i.e., largest magnitude) finite pole in X(z) to z=∞.
- Property 6: \bigcirc
	- If x[n] is a left-sided sequence, i.e., a sequence that is \bigcirc zero for $n > N_2 > \infty$, the ROC extends inwards from the innermost (i.e., smallest magnitude) nonzero pole in $X(z)$ to $z=0$.

Properties of ROC (cont.)

Property 7: \bigcirc

- A two-sided sequence is an infinite duration sequence \bigcirc that is neither right sided nor left sided. If x[n] is a two sided sequence, the ROC will consist of a ring in the zplane, bounded on the interior and exterior by a pole and consistent with property 3, not containing any poles.
- Property 8: \bigcirc
	- The ROC must be a connected region. \bigcap

Common Z-Transform Pairs

Common Z-Transform Pairs (cont.)

Common Z-Transform Pairs (cont.)

Example #1

Find the z-transform of the sequence: \circ $x[n] = \alpha^n u[n]$

Solution: Ω

$$
X(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \quad |z| > |a|
$$

$$
X(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1
$$

Example #2

Find the z-transform of the sequence: \circ $x[n] = -\alpha^n u[-n-1]$

Solution: \bigcirc

Example #3

\n- ○ Find the z-transform of:
$$
x[n] = \left(\frac{1}{2}\right)^n u(n) - 2^n u(-n-1)
$$
\n

O Solution:

$$
X(z) = \frac{2 - \frac{5}{2}z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - 2z^{-1}\right)}
$$