Examples of Lecture #4:

(a) 8(n)

(b) 5(n — m)

* Example#2:

Solution:
(a) Given x(n) = o(n)

Il forn=0
o(n)=
0 forn#0

X(@)=F{d(m)}= Y &(n)e ™|, _, =1

n=-—oco

F{o(n)} =1

S(n) 21

(¢) Given x(n) = 6(n — m)

I forn=m

o(n—m) ={

0 forn#m

X(w)= F{6(l‘l - m)} = z 5(}1 —m) e_jw" — e‘jw" — e—ja)m

n=m

n=-—eo

F{6(n—m)}=e /O™

—jom

5(n—m)<L)e




* Example #3:
(a) sin(%)u(n)

(b)) cos(wyn)u(n)

(a) Given x(n) = sin (%) u(n)

X(w) = F{Siﬂ (%) u(n)} = i {sin ( )u(n)} —jon _ i sin (%) e~ Jon
n=-—oo n=0

oo ej(nn‘/Z) e—j(nn‘/") o
- —/a)n _ Jjl(7/2) = wln _ —jl(m/2) + @]n
T |3 S

0 n=0 n=0
1 1
2 /l(fr/’) o] l—e =-jl(n/2) + ]
2 ja) [e/(n'/’) + e—j(/r/Z)]

¢ sin (1/2) 3 e/

1+e720 _o7I® cos (/2) 1+ ¢ /2@

(e) Given x(n) = cos(wyn) u(n)

X(@)=F{x(n)}= Y {cos(@yn) u(n)} e /"

n=-—oo

oo jyn — jayn
B Z elwo +e 1@ —jon
= —_— e
2

n=0
— l z [ej(a)o—a))]n + Z [e—j(a)0+a))]n
2 n=0 n=0
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211- e!(ﬂk)-w) | — e /(@t0)

1 1 - e—j(ﬂ)()+(l)) +1-= ej(ﬂ)()-ﬂ))
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1-e7? cos ,

1-2¢7/? cos w, + />



Example # 4:

X(ej‘”)=e'j‘“ for -rswsn

(a) Given X(w) = e7®
1 T i
x(n)=F "{X(w)} =— I e 1P e dw
2r el

1 r 1 ejw(n—l) ud
_ Jjo(n—1) _
Y J e dw = - { D)

- -
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t(n—1)
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Example #1:
yln]-Syln—1]=x[n]- 5 x[n—1]

Exampie 2.29 Determining the Impuise Response
for a Difference Equation

In this example we determine the impulse response for a stable linear time-invariant
system for which the input x[n] and output y[n] satisfy the linear constant-coefficient
difference equation

yln] - %y[n —1]=x[n] - %x[n -1]. (2.180)
In Chapter 3 we will see that the z-transform is more useful than the Fourier transform
for dealing with difference equations. However, this example offers a hint of the utility
of transform methods in the analysis of linear systems. To find the impulse response,
we set x[n] = 8[n]; with h[n] denoting the impulse response, Eq. (2.180) becomes

h[n] = 1h[n — 1] = 8[n] - }8[n —1]. (2.181)

Applying the Fourier transform to both sides of Eq. (2.181) and using properties 1 and
2 of Table 2.2, we obtain

H(e/?) - %e'in(eiw) =1- %e_jw. (2182)
or 1 ;
1—ze /@
H(e!®) = Tui—e_}; (2.183)
3

To obtain A[n], we want to determine the inverse Fourier transform of H(e/®). Toward
this end, we rewrite Eq. (2.183) as

, 1 lemio

H(e!®) = - —. 2.184
| €)= " T (2184)
From transform 4 of Table 2.3,
1\ F 1

(i) u[n] «— g )

- N\
Combining this transform with property 3 of Table 2.2, we obtain
1l ,—jo
1 1 n—1 F Ze
- (Z)(i) uln - 1] «— T %e—fw' (2.185)

Based on property 1 of Table 2.2, then,

) = (1) uln) — (H)(3)" " uln - 1. (2.186)



* Example #5:
y[n] = 1.3433y[n - 1] —0.9025y[n - 2] + x[n] -1 .4142x[n - 1] +x[n - 2]




* Example #6:

y[n]—O.ZSy[n—l] = x[n]—x[n—Z]




Examples of Lecture #5:

Example #1:
X [n] =a'u [n]

Example 3.1 Right-Sided Exponential Sequence

Consider the signal x[n] = a"u[n]. Because it is nonzero only for n > 0, this is an
example of a right-sided sequence. From Eq. (3.2),

(=]

X(2) = Z =a"uln]z7" = i(az'l)".

n=-—00 n=0

For convergence of X(z), we require that

e o]
Z laz”!|" < oo.
n=0
Thus, the region of convergence is the range of values of z for which laz™!| < 1 or,

equivalently, |z| > |a|. Inside the region of convergence, the infinite series converges to

X(Z)=Z(az—l)"— L fa, z| > |al. (3.10)
=0

T 1l—az!' 2

Here we have used the familiar formula for the sum of terms of a geometric
series. The z-transform has a region of convergence for any finite value of |a|. The
Fourier transform of x[n], on the other hand, converges only if |a| < 1. Fora = 1, x[n]
is the unit step sequence with z-transform

X(z) = |zl > 1. (3.11)

1—2z7U



Example #2:
x[n] = —a”u[—n — 1]

Example 3.2 Left-Sided Exponential Sequence

Now let x[n] = —a"u[—n — 1]. Since the sequence is nonzero only for n < —1, this is
a left-sided sequence. Then

o] -1

X(2)=— Z a"u[-n-1]z77" = - z a"z "

= e (3.12)

(oo} oC
=Y =1- 3
n=1 n=0
If ja—'z| < 1 or, equivalently, |z| < |a|, the sum in Eq. (3.12) converges, and

1 _ 1 oz
1-ag1z 1-—az71 " z-—

X(z)=1- o ld<lal (3.13)

$m z-plane

Unit circle

Figure 3.4 Pole—zero plot and region of convergence for Example 3.2.



* Example #3:




Examples of Lecture #6:

* Example #3:

X(2)-

) |Z|>_
l—lz_l l—lZ_l 2
4 2

Example 3.8 Second-Order z-Transform

Consider a sequence x[#n] with z-transform

X(z) =

1 1
(—f=nGa-1zn 7% ¢

Im z-plane

Figure 3.12 Pole-zero plot and ROC for Example 3.8.

The pole—zero plot for X (z) is shown in Figure 3.12. From the region of convergence
and property 5, Section 3.2, we see that x[#] is a right-sided sequence. Since the poles
are both first order, X (z) can be expressed in the form of Eq. (3.40):1i.e.,

A] A2

R S I (e =D
From Eq. (3.41),
A = (1 - %Z_l) X(Z)Iz.—_l/a = -1

A= (1-3z") X@|,_,,=2.

Therefore,
-1 2

XO=a-y Yt a-teny

Al sadlla
EE-COM

Gasml ¥l gy sall
al mgma ¥ glamy)

Since x[n] is right sided, the ROC for each term extends outward from the outermost
pole. From Table 3.1 and the linearity of the z-transform, it then follows that

x{n] =2 (%)nu[n} — (%)"u[n} .



Example #4:

Example 3.9 Inverse by Partial Fractions

To illustrate the case in which the partial fraction expansion has the form of Eq. (3.43),
consider a sequence x[n] with z-transform

1+2z7'+272 1+z71)2
1-3z7"+5z2  (1-1z1)(1-2z)

X(2) = |z] > 1. (3.46)

Im

z-plane

Figure 3.13 Pole-zero plot for the z-transform in Examplie 3.9.

The pole—zero plot for X(z) is shown in Figure 3.13. From the region of convergence
and property 5, Section 3.2, it is clear that x[#] is a right-sided sequence. Since M =
N = 2 and the poles are all first order, X(z) can be represented as

Ay Ay

+ .
_ 1,1 —z-1
22 1-z2

X(Z)=Bo+1



The constant By can be found by long division:

2
12341 P27 4+
z2-3z71+2

577121

eamlail 3 sall
al g ¥ glayl

Since the remainder after one step of long division is of degree 1 in the variable z7',
it is not necessary to continue to divide. Thus, X (z) can be expressed as

-1+5z7!
(1-3z)(1-2zY

Now the coefficients A; and A; can be found by applying Eq. (3.41) to Eq. (3.46) or,
equivalently, Eq. (3.47). Using Eq. (3.47), we obtain

_ 157! BRI
"o _(2+(1—%z-')<1—z—1)> (1 2 )} -

X(2)=2+ (3.47)

z=1/2

[ —1+45z71

Ay = (2+ , )(1—5‘)} =8.
— 1,1 R

i (1-3z7")(1-2z7") .

Therefore,
9 8
X(z)=2—l_%z_]+1_z_]. (3.48)

From Table 3.1, we see that since the ROC is |z| > 1,

2 <% 28[n).
1 zZ n
o @)
1 Z
= < u(n].

Thus, from the linearity of the z-transform,

x[n] =28[n] -9 (%)" uln] + 8uln].



Example # 5:

X(z)=2" 1—%[1 (1+z‘1)(1—z"1)

Example 3.10 Finite-Length Sequence
Suppose X (z) is given in the form
X()=z22(1-iz7)a+7hHa-z71. (3.50)
Although X (z) is obviously a rational function, its only poles are at z = 0, so a partial
fraction expansion according to the technique of Section 3.3.2 is not appropriate.
However, by multiplying the factors of Eq. (3.50), we can express X(z) as
X(z)=2"-tz-1+43z"

Therefore, by inspection, x[n] is seen to be

1, n=-2,

-3 n=-1,
x[nl=<¢ -1, n=0,

3 n=1,

0, otherwise.

Equivalently,
x[n] = 8[n+2] — Lé[n+ 1] — 8[n] + Lo[n — 1].



Example #6:

1
X(Z)=m’ 2> dl

Example 3.12 Power Series Expansion by
Long Division

Consider the z-transform

Izl > lal. (3.53)

1
X(Z) = m‘

Since the region of convergence is the exterior of a circle, the sequence is a right-sided
one. Furthermore, since X (z) approaches a finite constant as z approaches infinity, the
sequence is causal. Thus, we divide, so as to obtain a series in powers of z~!. Carrying
out the long division, we obtain

l+az'+a’z72+-

1—az7!|1

1—az!

az”!
az-! —a2z2
7 9
az -

or
1 2

r_—F=1+aZ_l+a22—“+"'

Hence, x[n] = a"u[n].



* Example #7:

74277 +77

X(z)

- 1-3z7%+77

* Example #8:

(a) x[n]=cos(nw,)u(n)







* Example #9:




¢ Example #10:

n(n)= 3 (k) (n+ k)

k=—00




¢ Example #11:




