Digital Signal Processing Z-Transform-II

Lecture-6 05-April-16

Properties of Z-Transform

• Linearity:

- Z-transform is a linear operator.
- If x[n] has a z-transform X(z) with a region of convergence R_x, and y[n] has a z-transform Y(z) with a region of convergence R_y, then:

$$w[n] = ax[n] + by[n] \stackrel{z}{\leftrightarrow} W[z] = aX[z] + bY[z]$$

• The ROC of w[n] will include the intersection of R_x and R_y, that is:

 R_w contains $R_x \cap R_y$

O Shifting Property:

- Shifting a sequence (delaying or advancing) multiplies the *z*-transform by a power of *z*.
- If x[n] has a z-transform X(z):

$$x[n-n_0] \stackrel{Z}{\nleftrightarrow} z^{-n_0} X[z]$$

- The quantity n_0 is an integer.
- If n_0 is positive, the original sequence x[n] is shifted right and if n_0 is negative, x[n] is shifted left.

• <u>Time Reversal</u>:

• If x[n] has a z-transform X(z) with a region of convergence R_x , that is the annulus $\alpha < |z| < \beta$, the z-transform of the time reversal sequence x(-n) is:

$$x(-n) \stackrel{Z}{\nleftrightarrow} X(z^{-1})$$

• And has a region of convergence $1/\beta < |z| < 1/\alpha$, which is denoted by $1/R_x$.

- Multiplication by an Exponential:
 - If a sequence x(n) is multiplied by a complex exponential α^{n} . $\alpha^{n} x(n) \stackrel{Z}{\Leftrightarrow} X(\alpha^{-1}z)$
 - If the ROC of X(z) is $r \le |z| \le r_+$, which will be denoted by R_x , the ROC of X($\alpha^{-1}z$) is $|\alpha|r_- \le |z| \le |\alpha|r_+$ which is denoted by $|\alpha|R_x$.
 - If x(n) is multiplied by a complex exponential, $e^{jn\omega_0}$,

$$e^{jn\omega_0}x(n) \stackrel{Z}{\nleftrightarrow} X(e^{-j\omega_0}z)$$

Convolution Theorem:

• Convolution in the time-domain is mapped into multiplication in frequency domain.

$$x_1[n] * x_2[n] \longleftrightarrow X_1(z) X_2(z)$$

- $Y(z) = X_1(z) X_2(z)$
- The ROC includes the intersection of $X_1(z)$ and $X_2(z)$.
- If a pole that borders on the ROC of one of the *z*transforms is canceled by a zero of the other, then the region of convergence of Y(z) may be larger.

- Consider the two sequences $x(n) = \alpha^n u(n)$ and $h(n) = \delta(n) \alpha \delta(n-1)$.
 - The z-transform of x(n) is:

$$X(z) = \frac{1}{1 - \alpha z^{-1}}, \quad |z| > |\alpha|$$

• And the z-transform of h(n) is:

$$H(z) = 1 - \alpha z^{-1}, \quad 0 < |z|$$

- However, the z-transform of the convolution of x(n) with h(n) is : $Y(z) = X(z)H(z) = \frac{1}{1 - \alpha z^{-1}} \cdot (1 - \alpha z^{-1}) = 1$
- Which is due to pole-zero cancellation, has a ROC that is the entire z-plane.

• <u>Conjugation</u>:

• If X(z) is the z-transform of x(n), the z-transform of the complex conjugate of x(n) is:

$$x^*(n) \stackrel{Z}{\longleftrightarrow} X^*(z^*)$$

• If x(n) is real valued $x(n)=x^*(n)$, then $X(z)=X^*(z^*)$.

- Derivative:
 - If X(z) is the z-transform of x(n), the z-transform of the nx(n) is: $nx(n) \stackrel{z}{\longleftrightarrow} - z \frac{dX(z)}{dz}$
 - Repeated application of this property allows for the evaluation of the z-transform of $n^{k}x(n)$ for any integer k.

Table of Properties of Z-Transform

Sequence	Transform	ROC
x[n]	X(z)	R_x
$x_1[n]$	$X_1(z)$	R_{x_1}
$x_2[n]$	$X_2(z)$	R_{x_2}
$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
$x[n-n_0]$	$z^{-n_0}X(z)$	R_x , except for the possible addition or deletion of the origin or ∞
$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$

Table of Properties of Z-Transform

nx[n]	$-z\frac{dX(z)}{dz}$	R_x , except for the possible addition or deletion of the origin or ∞
$x^*[n]$	$X^{*}(z^{*})$	R_x
$\mathcal{R}e\{x[n]\}$	$\frac{1}{2}[X(z)+X^*(z^*)]$	Contains R_x
$\mathcal{J}m\{x[n]\}$	$\frac{1}{2i}[X(z) - X^*(z^*)]$	Contains R_x
$x^*[-n]$	$X^{2}(1/z^{*})$	$1/R_x$
$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
Initial-value theorem:		

 $x[n] = 0, \quad n < 0 \qquad \lim_{z \to \infty} X(z) = x[0]$

• Find the z-transform of $x(n)=n \alpha^n u(-n)$:

$$X(z) = -\frac{\alpha^{-1}z}{(1-\alpha^{-1}z)^2}, \quad |z| < \alpha$$

Initial-Value Theorem

• If x[n] is zero for n<0 (i.e., if x[n] is causal), then: $x[0] = \lim_{z \to \infty} X(z)$

• If we let $z \rightarrow \infty$, each term in X(z) goes to zero except the first.

Inverse Z-Transform

- Z-transform is a useful tool in linear system analysis.
- As it is important to find z-transform of a sequence, there are methods used to invert the z-transform and recover the sequence x(n) form X(z).
- Some of procedure for inverse z-transform are as follows:
 - Inspection Method
 - Partial Fraction Expansion
 - Power Series Expansion

Inspection Method

- It consists simply of becoming familiar with or recognizing "by inspection", certain transform pairs.
- For example,

$$a^n u[n] \stackrel{z}{\leftrightarrow} \frac{1}{1-az^{-1}}, \quad |z| > |a|$$

• If we need to find the inverse z-transform of: $X(z) = \left(\frac{1}{1 - \frac{1}{2}z^{-1}}\right), \quad |z| > \frac{1}{2}$

Partial Fraction Expansion

• Assume that X(z) is expressed as a ratio of polynomials in z^{-1} , i.e.,

$$X(z) = \frac{\sum_{k=0}^{k=0} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}} \rightarrow eq(1)$$

• An equivalent expression is:

$$X(z) = \frac{z^N \sum_{k=0}^M b_k z^{M-k}}{z^M \sum_{k=0}^N a_k z^{N-k}} \rightarrow eq(2)$$

Partial Fraction Expansion (cont.)

- Eq.(2) shows that there will be M zeros and N poles at nonzero locations in the z-plane.
- There will be either M-N poles at z=0 if M>N or N-M zeros at z=0 if N>M.
- In other words eq.(1) will always have the same number of poles and zeros in the finite z-plane and there are no poles or zeros at $z=\infty$.
- To obtain the partial fraction expression of X(z) in eq.
 (1), the X(z) could be expressed in the form:

$$X(z) = \frac{b_0}{a_0} \frac{\prod_{k=1}^{M} \left(1 - c_k z^{-1}\right)}{\prod_{k=1}^{N} \left(1 - d_k z^{-1}\right)} \to eq(3)$$

Partial Fraction Expansion (cont.)

- Where c_k 's are the nonzero zeros of X(z) and the d_k 's are the nonzero poles of X(z).
- If M<N and the poles are all first order, then X(z) can be expressed as: $X(z) = \sum_{k=1}^{N} \frac{A_k}{1 - d_k z^{-1}} \rightarrow eq(4)$
- Coefficient A_k can be found from:

$$A_{k} = \left(1 - d_{k} z^{-1}\right) X(z) \Big|_{z = d_{k}} \rightarrow eq(5)$$

• Consider a sequence x[n] with z-transform: $X(z) = \frac{1}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{2}z^{-1}\right)}, \quad |z| > \frac{1}{2}$ • Solution:

• Solution:

 $x[n] = 2\left(\frac{1}{2}\right)^n u[n] - \left(\frac{1}{4}\right)^n u[n]$

O Inverse by Partial Fractions:

• Consider a sequence x[n] with z-transform:

$$X(z) = \frac{1+2z^{-1}+z^{-2}}{1-\frac{3}{2}z^{-1}+\frac{1}{2}z^{-2}} = \frac{\left(1+z^{-1}\right)^2}{\left(1-\frac{1}{2}z^{-1}\right)\left(1-z^{-1}\right)}, \quad |z| > 1$$

$$x[n] = 2\delta[n] - 9\left(\frac{1}{2}\right)^n u[n] + 8u[n]$$

Power Series Expansion

• The z-transform is a power series expansion,

 $X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n} = \dots + x[-2] z^{2} + x[-1] z + x[0] + x[1] z^{-1} + x[2] z^{-2} + \dots$

 Where the sequence values of x(n) are the coefficients of z⁻ⁿ in the expansion.

O Finite-Length Sequence:

• Suppose X(z) is given in the form:

$$X(z) = z^{2} \left(1 - \frac{1}{2} z^{-1}\right) \left(1 + z^{-1}\right) \left(1 - z^{-1}\right)$$

$$x[n] = \delta[n+2] - \frac{1}{2}\delta[n+1] - \delta[n] + \frac{1}{2}\delta[n-1]$$

• Power Series Expansion by Long Division:

• Consider the z-transform:

$$X(z) = \frac{1}{1 - az^{-1}}, \quad |z| > |a|$$

• Solution:

 $x[n] = a^n u[n]$

• The z-transform of a sequence x(n) is: (4.1) $X(z) = \frac{z + 2z^{-2} + z^{-3}}{1 - 3z^{-4} + z^{-5}}$

- If the ROC includes the unit circle, find the DTFT of x(n) at $\omega = \pi$.
- Solution:

$$X(e^{j\omega})\Big|_{\omega=\pi}=0$$

Find the z-transform of the following sequences: (4.2, 4.4)

 $(a) \quad x[n] = \cos(n\omega_0)u(n)$

$$(b) \quad x[n] = \left(\frac{1}{3}\right)^n u(-n)$$

(c)
$$x[n] = \left(\frac{1}{2}\right)^n u(n+2) + (3)^n u(-n-1)$$

Example #8 (cont.)

(a)
$$X(z) = \frac{1 - (\cos \omega_0) z^{-1}}{1 - 2(\cos \omega_0) z^{-1} + z^{-2}}, |z| > 1$$

(b)
$$Y(z) = \frac{1}{1 - 3z^{-1}}, |z| > 3$$

(c)
$$X(z) = \frac{4z^2}{1 - \frac{1}{2}z^{-1}} - \frac{1}{1 - 3z^{-1}}, \quad \frac{1}{2} < |z| < 3$$

Consider the sequence shown in the figure below. The sequence repeats periodically with a period N=4 for n≥0 and is zero for n<0. find the z-transform of this sequence along with its ROC. (4.9)

• The deterministic autocorrelation sequence corresponding to a sequence x(n) is defined as: (4.39)

$$r_{x}(n) = \sum_{k=-\infty}^{\infty} x(k) x(n+k)$$

- (a) Express $r_x(n)$ as the convolution of two sequences, and find the z-transform of $r_x(n)$ in terms of the ztransform of x(n).
- (b) If $x(n) = \alpha^n u(n)$, where |a| < 1, find the autocorrelation sequence, $r_x(n)$ and its z-transform.

Example #10 (cont.)

$$(a) \quad R_x(z) = X(z)X(z^{-1})$$

(b)
$$r_x(n) = \frac{1}{1-a^2} \left[a^n u(n) + a^{-n} u(-n-1) \right] = \frac{1}{1-a^2} a^{|n|}, \quad |a| < z < 1/|a|$$

• Find the one-sided z-transform of the following sequence: (4.30)

$$x(n) = \left(\frac{1}{3}\right)^3 u(n+3)$$

$$X(z) = \frac{1}{1 - \frac{1}{3}z^{-1}}, \quad |z| > \frac{1}{3}$$