Digital Signal Processing Z-Transform-II

Lecture-6 05-April-16

Properties of Z-Transform

Linearity: \bigcirc

- Z-transform is a linear operator. \bigcap
- If $x[n]$ has a z-transform $X(z)$ with a region of \bigcirc convergence R_x , and y[n] has a z-transform $Y(z)$ with a region of convergence R_{v} , then:

$$
w[n] = ax[n] + by[n] \leftrightarrow W[z] = aX[z] + bY[z]
$$

The ROC of w[n] will include the intersection of R_x and \bigcirc R_v , that is:

 R_w *contains* $R_x \cap R_v$

Shifting Property: \bigcirc

- Shifting a sequence (delaying or advancing) multiplies the \bigcirc z-transform by a power of z.
- \bigcirc If x[n] has a z-transform $X(z)$:

$$
x[n - n_0] \stackrel{Z}{\leftrightarrow} z^{-n_0} X[z]
$$

- The quantity n_0 is an integer. \bigcirc
- \bigcap If n_0 is positive, the original sequence x[n] is shifted right and if n_0 is negative, x[n] is shifted left.

Time Reversal: \bigcirc

 \bigcirc If x[n] has a z-transform $X(z)$ with a region of convergence R_y, that is the annulus $\alpha < |z| < \beta$, the z-transform of the time reversal sequence x(-n) is:

$$
x(-n) \stackrel{Z}{\leftrightarrow} X(z^{-1})
$$

And has a region of convergence $1/\beta \le |z| \le 1/\alpha$, which is denoted by $1/R_{x}$.

- **Multiplication by an Exponential:** \bigcirc
	- \bigcirc If a sequence $x(n)$ is multiplied by a complex exponential α ⁿ. $\alpha^n x(n) \rightarrow$ *Z* $X\!\left(\alpha^{-1}z\right)$
	- If the ROC of $X(z)$ is $r<|z| \leq r_+$, which will be denoted by R_x, the ROC of X(α ⁻¹z) is $|\alpha|$ r < $|z|$ < $|\alpha|$ r₊ which is denoted by α | R_x.
	- If $x(n)$ is multiplied by a complex exponential, $e^{jn\omega_0}$,

$$
e^{jn\omega_0}x(n) \stackrel{Z}{\leftrightarrow} X\big(e^{-j\omega_0}z\big)
$$

Convolution Theorem: \bigcirc

 \circ Convolution in the time-domain is mapped into multiplication in frequency domain. *Z*

$$
x_1[n] * x_2[n] \stackrel{\sim}{\longleftrightarrow} X_1(z) X_2(z)
$$

$$
O Y(z)=X_1(z) X_2(z)
$$

- The ROC includes the intersection of $X_1(z)$ and $X_2(z)$. \bigcirc
- If a pole that borders on the ROC of one of the ztransforms is canceled by a zero of the other, then the region of convergence of Y(z) may be larger.

- Consider the two sequences $x(n) = \alpha^n u(n)$ and $h(n) = \delta(n)$ - \bigcirc $\alpha \delta(n-1)$.
	- \bigcap The z-transform of $x(n)$ is:

$$
X(z) = \frac{1}{1 - \alpha z^{-1}}, \quad |z| > |\alpha|
$$

And the z-transform of h(n) is: \bigcirc

$$
H(z) = 1 - \alpha z^{-1}, \quad 0 < |z|
$$

- However, the z-transform of the convolution of $x(n)$ with $h(n)$ \bigcirc is : $Y(z) = X(z)H(z) = \frac{1}{1-z}$ $\frac{1}{-1}$. $\left(1 - \alpha z^{-1}\right) = 1$ 1−α*z*
- Which is due to pole-zero cancellation, has a ROC that is the \bigcirc entire z-plane.

Conjugation: \bigcirc

If $X(z)$ is the z-transform of $x(n)$, the z-transform of the \bigcap complex conjugate of $x(n)$ is:

$$
x^*(n) \stackrel{Z}{\Longleftrightarrow} X^*(z^*)
$$

If $x(n)$ is real valued $x(n)=x^*(n)$, then $X(z)=X^*(z^*)$. \bigcap

- **Derivative:** \bigcirc
	- \bigcap If X(z) is the z-transform of x(n), the z-transform of the nx(n) is: *nx*(*n*) *Z* ↔− *^z dX*(*z*) *dz*
	- Repeated application of this property allows for the \bigcirc evaluation of the z-transform of n^k x(n) for any integer k.

Table of Properties of Z-Transform

Table of Properties of Z-Transform

 $x[n] = 0, \quad n < 0$ $\lim X(z) = x[0]$ $z\rightarrow\infty$

Find the z-transform of $x(n)=n \alpha^n u(-n)$: \circ

Solution: \circ

$$
X(z) = -\frac{\alpha^{-1}z}{\left(1 - \alpha^{-1}z\right)^2}, \quad |z| < \alpha
$$

Initial-Value Theorem

If $x[n]$ is zero for $n\leq 0$ (i.e., if $x[n]$ is causal), then: \circ $x[0] = \lim_{x \to \infty} X(x)$ *z*→∞

If we let $z\rightarrow\infty$, each term in $X(z)$ goes to zero except \circ the first.

Inverse Z-Transform

- Z-transform is a useful tool in linear system analysis.
- As it is important to find z-transform of a sequence, \circ there are methods used to invert the z-transform and recover the sequence $x(n)$ form $X(z)$.
- Some of procedure for inverse z-transform are as \circ follows:
	- Inspection Method \bigcirc
	- Partial Fraction Expansion \bigcirc
	- Power Series Expansion \bigcirc

Inspection Method

- It consists simply of becoming familiar with or \bigcirc recognizing "by inspection", certain transform pairs.
- For example,

$$
a^n u[n] \stackrel{z}{\leftrightarrow} \frac{1}{1 - az^{-1}}, \quad |z| > |a|
$$

If we need to find the inverse z-transform of: \bigcirc $\sqrt{2}$ \setminus \lfloor \vert $X(z) = \left| \frac{1}{1} \right|$ 1 , $|z|$ $\mathsf I$ $\overline{}$ $1-\frac{1}{2}$ 2 $\mathsf I$ *z* −1 $\overline{}$ ⎝ $\overline{ }$ 2

Partial Fraction Expansion

Assume that $X(z)$ is expressed as a ratio of polynomials \circ in z^1 , i.e., *M*

$$
X(z) = \frac{\sum_{k=0}^{k=0} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}} \rightarrow eq(1)
$$

An equivalent expression is: \circ

$$
X(z) = \frac{z^N \sum_{k=0}^M b_k z^{M-k}}{z^M \sum_{k=0}^N a_k z^{N-k}} \rightarrow eq(2)
$$

Partial Fraction Expansion (cont.)

- Eq.(2) shows that there will be M zeros and N poles at \bigcirc nonzero locations in the z-plane.
- There will be either M-N poles at $z=0$ if M>N or N-M \bigcirc zeros at $z=0$ if N $>$ M.
- \bigcirc In other words eq.(1) will always have the same number of poles and zeros in the finite z-plane and there are no poles or zeros at $z=\infty$.
- \bigcirc To obtain the partial fraction expression of $X(z)$ in eq. (1), the $X(z)$ could be expressed in the form:

$$
X(z) = \frac{b_0}{a_0} \frac{\prod_{k=1}^{M} (1 - c_k z^{-1})}{\prod_{k=1}^{N} (1 - d_k z^{-1})} \to eq(3)
$$

Partial Fraction Expansion (cont.)

- \bigcirc Where c_k's are the nonzero zeros of X(z) and the d_k's are the nonzero poles of $X(z)$.
- If $M \le N$ and the poles are all first order, then $X(z)$ can \bigcirc be expressed as: *N* $X(z) = \sum_{k=1}^{N} \frac{A_k}{1 - d}$ $\sum_{1-d}^{n_k} \rightarrow eq(4)$ $1-d_kz^{-1}$ *k*=1
- Coefficient A_k can be found from: \bigcirc

$$
A_k = \left(1 - d_k z^{-1}\right) X(z)\Big|_{z=d_k} \longrightarrow eq(5)
$$

Consider a sequence x[n] with z-transform: \bigcirc $X(z) = \frac{1}{(1 + \lambda)^2}$ 1 , $|z|$ $\begin{pmatrix} 1 & 1 \end{pmatrix}$ $\left(1-\frac{1}{4}z^{-1}\right)$ $1-\frac{1}{4}$ $\left(1-\frac{1}{2}\right)$ $\begin{pmatrix} 1 & 1 \end{pmatrix}$ $\left(1-\frac{1}{2}z^{-1}\right)$ 2 *z z* \vert ⎝ 4 $\overline{ }$ ⎝ 2 ⎠

Solution: \bigcap

> $x[n] = 2\left(\frac{1}{2}\right)$ 2 $\sqrt{2}$ ⎝ $\left(\frac{1}{2}\right)$ ⎠ \vert $\binom{n}{u}[n]$ – $\left(\frac{1}{4}\right)$ 4 $\sqrt{2}$ ⎝ $\left(\frac{1}{4}\right)$ $\overline{ }$ \vert *n u*[*n*]

Inverse by Partial Fractions: \circ

> Consider a sequence x[n] with z-transform: \bigcirc

$$
X(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}} = \frac{\left(1 + z^{-1}\right)^2}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - z^{-1}\right)}, \quad |z| > 1
$$

Solution: \bigcirc

$$
x[n] = 2\delta[n] - 9\left(\frac{1}{2}\right)^n u[n] + 8u[n]
$$

Power Series Expansion

The z-transform is a power series expansion, \circ

$$
X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} = \dots + x[-2]z^2 + x[-1]z + x[0] + x[1]z^{-1} + x[2]z^{-2} + \dots
$$

Where the sequence values of $x(n)$ are the coefficients \circ of z^n in the expansion.

Finite-Length Sequence: \circ

Suppose X(z) is given in the form: \circ

$$
X(z) = z^{2} \left(1 - \frac{1}{2} z^{-1} \right) \left(1 + z^{-1} \right) \left(1 - z^{-1} \right)
$$

Solution: \circ

$$
x[n] = \delta[n+2] - \frac{1}{2}\delta[n+1] - \delta[n] + \frac{1}{2}\delta[n-1]
$$

Power Series Expansion by Long Division: \circ

Consider the z-transform: \circ

$$
X(z) = \frac{1}{1 - az^{-1}}, \quad |z| > |a|
$$

Solution: Ω

 $x[n] = a^n u[n]$

The z-transform of a sequence $x(n)$ is: (4.1) \bigcirc $X(z) = \frac{z + 2z^{-2} + z^{-3}}{1 - 2z^{-4} + z^{-5}}$ $1-3z^{-4}+z^{-5}$

If the ROC includes the unit circle, find the DTFT of \bigcirc $x(n)$ at $\omega = \pi$.

Solution: \bigcirc

$$
X\big(e^{j\omega}\big)\Big|_{\omega=\pi}=0
$$

Find the z-transform of the following sequences: (4.2, \circ 4.4)

 (a) $x[n] = \cos(n\omega_0)u(n)$

(b)
$$
x[n] = \left(\frac{1}{3}\right)^n u(-n)
$$

(c)
$$
x[n] = \left(\frac{1}{2}\right)^n u(n+2) + (3)^n u(-n-1)
$$

Example #8 (cont.)

Solution: \circ

(a)
$$
X(z) = \frac{1 - (\cos \omega_0) z^{-1}}{1 - 2(\cos \omega_0) z^{-1} + z^{-2}}, \quad |z| > 1
$$

(b)
$$
Y(z) = \frac{1}{1 - 3z^{-1}}, \quad |z| > 3
$$

(c)
$$
X(z) = \frac{4z^2}{1 - \frac{1}{2}z^{-1}} - \frac{1}{1 - 3z^{-1}}, \frac{1}{2} < |z| < 3
$$

Consider the sequence shown in the figure below. The \bigcirc sequence repeats periodically with a period N=4 for n≥0 and is zero for n<0. find the z-transform of this sequence along with its ROC. (4.9)

The deterministic autocorrelation sequence corresponding to a sequence $x(n)$ is defined as: (4.39)

$$
r_x(n) = \sum_{k=-\infty}^{\infty} x(k) x(n+k)
$$

- \bigcirc (a) Express r_y(n) as the convolution of two sequences, and find the z-transform of $r_x(n)$ in terms of the ztransform of x(n).
- (b) If $x(n) = \alpha^n u(n)$, where $|a| \le 1$, find the autocorrelation sequence, $r_{x}(n)$ and its z-transform.

Example #10 (cont.)

Solution: \circ

$$
(a) \quad R_x(z) = X(z)X(z^{-1})
$$

(b)
$$
r_x(n) = \frac{1}{1-a^2} \Big[a^n u(n) + a^{-n} u(-n-1) \Big] = \frac{1}{1-a^2} a^{|n|}, |a| < z < 1/|a|
$$

Find the one-sided z-transform of the following \circ sequence: (4.30) 3

$$
x(n) = \left(\frac{1}{3}\right)^3 u(n+3)
$$

Solution: \circ

$$
X(z) = \frac{1}{1 - \frac{1}{3}z^{-1}}, \quad |z| > \frac{1}{3}
$$