Digital Signal Processing Sampling-I

Lecture-7 06-April-16

Introduction

- Most Discrete time signals come from sampling a \bigcirc continuous time signal, such as speech and audio signals, radar and sonar data, seismic and biological signals.
- The process of converting these signals into digital \bigcirc form is called analog to digital (A/D) conversion.
- The process of reconstructing an analog signal from its samples is known as digital to analog (D/A) conversion.

Periodic Sampling

- The typical method of obtaining a discrete time representation of a continuous time signal is through periodic sampling.
- Sequence of samples x[n] is obtained from a continuous \circ time signal $x_c(t)$ according to the relation:

$$
x[n] = x_c(nT), \quad -\infty < n < \infty \quad \to eq(1)
$$

- In eq.(1), T is the sampling period and its reciprocal $f_s = 1/T$ \bigcirc is the sampling frequency in samples per second.
- When frequency in radians per second is used it is expressed \circ as Ω _s=2 π/T .

Periodic Sampling(cont.)

A system that implements the operation of eq.(1) as an \circ ideal continuous-to-discrete-time (C/D) converter is shown below:

$$
x_c(t)
$$

$$
C/D
$$

\n
$$
x[n] = x_c(nT)
$$

The sampling operation is generally not invertible *i.e.*, \circ given the output x[n], it is not possible in general to reconstruct $x_c(t)$.

Periodic Sampling(cont.)

- It is convenient to represent the sampling process \bigcirc mathematically in two stages.
- The stages consist of an impulse train modulator \bigcirc followed by conversion of the impulse train to a sequence.

Periodic Sampling(cont.)

- To derive the frequency domain relation between the \circ input and output of an ideal C/D converter.
- Let us first consider the conversion of $x_c(t)$ to $x_s(t)$ \bigcirc through modulation of the periodic impulse train:

$$
s(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)
$$

 \circ Where δ (t) is the unit impulse function or Dirac delta function. We modulate $s(t)$ with $x_c(t)$,

 $x_s(t) = x_c(t)s(t)$

$$
=x_c(t)\sum_{n=-\infty}^{\infty}\delta(t-nT)
$$

Through the sifting property of the impulse function, $x_{s}(t)$ \bigcirc can be expressed as: ∞

$$
x_{s}(t) = \sum_{n=-\infty}^{\infty} x_{c}(nT)\delta(t - nT)
$$

- Let us now consider the Fourier transform of $x_s(t)$. \bigcap
- $\mathbf{x}_{s}(t)$ is the product of $\mathbf{x}_{c}(t)$ and $s(t)$, the Fourier transform of \circ $x_s^s(t)$ is the convolution of the Fourier transforms $X_c(j\Omega)$ and $S(j\Omega)$.
- The Fourier transform of a periodic impulse train is a \bigcirc periodic impulse train.
- Specifically, \bigcirc

$$
S(j\Omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_s)
$$

Where Ω _s=2 π /T is the sampling frequency in radians/s. Since,

$$
X_s(j\Omega) = \frac{1}{2\pi} X_c(j\Omega) * S(j\Omega)
$$

Where $*$ denotes the operation of continuous-variable \circ convolution. It follows that:

$$
X_{s}(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}(j(\Omega - k\Omega_{s}))
$$

Above equation provides the relationship between the \bigcirc Fourier transforms of the input and the output of the impulse train modulator.

The figures below depicts the frequency domain \bigcirc representation of impulse train of samples.

The above figure represents a band limited Fourier \bigcirc transform whose highest nonzero frequency component in $X_c(j\Omega)$.

Figure below shows the periodic impulse train $S(j\Omega)$. \bigcirc

 $X_{s}(j\Omega)$, the result of convolving $X_{c}(j\Omega)$ with $S(j\Omega)$. \bigcirc

 $\Omega_s - \Omega_N > \Omega_N$ *or* $\Omega_s > 2\Omega_N$

- $\mathbf{x}_{\text{c}}(\mathsf{t})$ can be recovered from $\mathbf{x}_{\text{s}}(\mathsf{t})$ with an ideal low pass filter.
- This is depicted in following figures. \bigcirc

- Aliasing in the frequency domain is depicted in the \bigcirc following example for the simple case of a cosine signal.
- The figure below shows the Fourier transform of the \bigcirc signal : $x_c(t) = \cos \Omega_0 t$.

The following figure shows the Fourier transform of \bigcirc $\mathbf{x}_s(t)$ with $\Omega_0 < \Omega_s/2$.

 π

 $\frac{\Omega_s}{\Omega} \Omega_0 \Omega_s$

 $\overline{2}$

 Ω

Figure below shows the Fourier transform of $x_s(t)$ with \bigcirc $\Omega_0 > \Omega_s / 2.$ $X_{s}(j\Omega)$ $\Omega_0 > \frac{\pi}{T} = \frac{\Omega_s}{2}$

 $-\Omega_s$ $-\Omega_0$

The Fourier transform of the low pass filter output for \circ Ω_0 < $\Omega_s/2 = \pi/T$ and Ω_0 > π/T , respectively with $\Omega_c = \Omega_s/2$, shown below:

- Above two figures correspond to the case of aliasing. \bigcirc
- With no aliasing the reconstructed output is: $x_r(t) = \cos \Omega_0 t$. \bigcap
- With aliasing the reconstructed output is: $x_r(t) = cos(\Omega_s \Omega_0)t$. \bigcap
- That is the higher the frequency signal cos Ω_0 t has taken on the \bigcirc identity (alias) of the lower frequency signal cos (Ω_{s} - Ω_{0})t as a consequence of the sampling and reconstruction.
- This above discussion if the basis for the Nyquist sampling \bigcirc theorem.

Nyquist Sampling Theorem

Let $x_c(t)$ be a band limited signal with: \circ $X_c (j\Omega) = 0$ *for* $|\Omega| \ge \Omega_N$

- Then $x_c(t)$ is uniquely determined by its samples $x[n]=x_c(nT)$, n=0, $\pm 1, \pm 2, \dots$ If: $\Omega_s = \frac{2\pi}{T}$ *T* $\geq 2\Omega_N$
- \bigcap The frequency Ω_N is commonly referred to as the Nyquist frequency and the frequency $2\Omega_N$ that must be exceeded by the sampling frequency is called the Nyquist rate.

Example #1

Sampling and reconstruction of a sinusoidal signal.

If we sample the continuous time signal $x_c(t) = \cos(4000\pi t)$ with sampling period T=1/6000. $x[n] = x_c(nT) = \cos(4000 \pi Tn) = \cos(\omega_0 n)$

$$
\text{Where, } \qquad \omega_0 = 4000 \pi T = \frac{2\pi}{3}
$$

- In this case, \bigcap $\Omega_s = \frac{2\pi}{T}$ $\frac{25c}{T}$ = 12000 π
- The highest frequency of the signal is: $\Omega_0 = 4000\pi$ \bigcirc
- So the conditions of the Nyquist sampling theorem are satisfied and \bigcirc there is no aliasing.
- The Fourier transform of $x_c(t)$ is: \bigcirc $X_c(j\Omega) = \pi \delta (\Omega - 4000\pi) + \pi \delta (\Omega + 4000\pi)$

Example #1 (cont.)

