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Introduction  

!   Most Discrete time signals come from sampling a 
continuous time signal, such as speech and audio 
signals, radar and sonar data, seismic and biological 
signals. 

!   The process of converting these signals into digital 
form is called analog to digital (A/D) conversion. 

!   The process of reconstructing an analog signal from its 
samples is known as digital to analog (D/A) 
conversion. 



Periodic Sampling 

!   The typical method of obtaining a discrete time 
representation of a continuous time signal is through 
periodic sampling. 

!   Sequence of samples x[n] is obtained from a continuous 
time signal xc(t) according to the relation: 

!   In eq.(1), T is the sampling period and its reciprocal fs=1/T 
is the sampling frequency in samples per second. 

!   When frequency in radians per second is used it is expressed 
as Ωs=2π/T. 

x n[ ] = xc nT( ), −∞ < n <∞ → eq 1( )



Periodic Sampling(cont.) 

!   A system that implements the operation of eq.(1) as an 
ideal continuous-to-discrete-time (C/D) converter is 
shown below: 

!   The sampling operation is generally not invertible i.e., 
given the output x[n], it is not possible in general to 
reconstruct xc(t). 



Periodic Sampling(cont.) 

!   It is convenient to represent the sampling process 
mathematically in two stages. 

!   The stages consist of an impulse train modulator 
followed by conversion of the impulse train to a 
sequence. 



Periodic Sampling(cont.) 



Frequency Domain 
Representation of Sampling 

!   To derive the frequency domain relation between the 
input and output of an ideal C/D converter.  

!   Let us first consider the conversion of xc(t) to xs(t) 
through modulation of the periodic impulse train: 

!   Where δ(t) is the unit impulse function or Dirac delta 
function. We modulate s(t) with xc(t) ,  

s t( ) = δ t − nT( )
n=−∞

∞

∑

xs t( ) = xc t( )s t( )

= xc t( ) δ t − nT( )
n=−∞

∞

∑



Frequency Domain Representation 
of Sampling (cont.) 

!   Through the sifting property of the impulse function, xs(t) 
can be expressed as: 

!   Let us now consider the Fourier transform of xs(t).  

! xs(t) is the product of xc(t) and s(t), the Fourier transform of 
xs(t) is the convolution of the Fourier transforms Xc(jΩ) and 
S(jΩ). 

!   The Fourier transform of a periodic impulse train is a 
periodic impulse train. 

!   Specifically,  

xs t( ) = xc nT( )δ t − nT( )
n=−∞

∞

∑

S jΩ( ) = 2π
T

δ Ω− kΩs( )
k=−∞

∞

∑



Frequency Domain Representation 
of Sampling (cont.) 

!   Where Ωs=2π/T is the sampling frequency in radians/s. 
Since,  

!   Where * denotes the operation of continuous-variable 
convolution. It follows that: 

!   Above equation provides the relationship between the 
Fourier transforms of the input and the output of the 
impulse train modulator. 

Xs jΩ( ) = 1
2π

Xc jΩ( )∗S jΩ( )

Xs jΩ( ) = 1
T

Xc j Ω− kΩs( )( )
k=−∞

∞

∑



Frequency Domain Representation 
of Sampling (cont.) 

!   The figures below depicts the frequency domain 
representation of impulse train of samples. 

!   The above figure represents a band limited Fourier 
transform whose highest nonzero frequency 
component in Xc(jΩ). 



Frequency Domain Representation 
of Sampling (cont.) 

!   Figure below shows the periodic impulse train S(jΩ). 

! Xs(jΩ), the result of convolving Xc(jΩ) with S(jΩ). 

Ωs −ΩN >ΩN or Ωs > 2ΩN



Frequency Domain Representation 
of Sampling (cont.) 



Frequency Domain Representation 
of Sampling (cont.) 

!   xc(t) can be recovered from xs(t) with an ideal low pass 
filter. 

!   This is depicted in following figures. 



Frequency Domain Representation 
of Sampling (cont.) 



Frequency Domain Representation 
of Sampling (cont.) 



Aliasing 

!   Aliasing in the frequency domain is depicted in the 
following example for the simple case of a cosine signal. 

!   The figure below shows the Fourier transform of the 
signal : xc(t)=cos Ω0t. 



Aliasing 

!   The following figure shows the Fourier transform of 
xs(t) with Ω0<Ωs/2. 

!   Figure below shows the Fourier transform of xs(t) with 
Ω0>Ωs/2. 



Aliasing 

!   The Fourier transform of the low pass filter output for 
Ω0<Ωs/2 = π/T and Ω0>π/T, respectively with 
Ωc=Ωs/2, shown below: 



Aliasing 

!   Above two figures correspond to the case of aliasing. 

!   With no aliasing the reconstructed output is: xr(t)=cos Ω0t. 

!   With aliasing the reconstructed output is: xr(t)=cos ( Ωs-Ω0 )t. 

!   That is the higher the frequency signal cos Ω0t has taken on the 
identity (alias) of the lower frequency signal cos ( Ωs-Ω0 )t as a 
consequence of the sampling and reconstruction. 

!   This above discussion if the basis for the Nyquist sampling 
theorem. 



Nyquist Sampling Theorem 

!   Let xc(t) be a band limited signal with: 

!   Then xc(t) is uniquely determined by its samples x[n]=xc(nT), 
n=0,±1,±2,…. If: 

!   The frequency ΩN is commonly referred to as the Nyquist 
frequency and the frequency 2ΩN that must be exceeded by the 
sampling frequency is called the Nyquist rate. 

Xc jΩ( ) = 0 for Ω ≥ΩN

Ωs =
2π
T

≥ 2ΩN



Example #1 

!   Sampling and reconstruction of a sinusoidal signal. 
!   If we sample the continuous time signal xc(t)=cos (4000π t) with 

sampling period T=1/6000. 

!   Where, 

!   In this case, 

!   The highest frequency of the signal is: 
!   So the conditions of the Nyquist sampling theorem are satisfied and 

there is no aliasing.  
!   The Fourier transform of xc(t) is: 

x n[ ] = xc nT( ) = cos 4000πTn( ) = cos ω0n( )

ω0 = 4000πT =
2π
3

Ωs =
2π
T

=12000π

Ω0 = 4000π

Xc jΩ( ) = πδ Ω− 4000π( )+πδ Ω+ 4000π( )



Example #1 (cont.) 


