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Introduction

O  Most Discrete time signals come from sampling a
continuous time signal, such as speech and audio
signals, radar and sonar data, seismic and biological
signals.

O The process of converting these signals into digital
form is called analog to digital (A/D) conversion.

O The process of reconstructing an analog signal from its
samples is known as digital to analog (D/A)
conversion.



Periodic Sampling

The typical method of obtaining a discrete time
representation of a continuous time signal is through
periodic sampling.

Sequence of samples x[n] is obtained from a continuous
time signal x (t) according to the relation:
x[n] =X, (nT), —o<pn<o — eq(l)

In eq.(1), T is the sampling period and its reciprocal f=1/T
is the sampling frequency in samples per second.

When frequency in radians per second is used it is expressed

as ¢ =2m/T.



Periodic Sampling(cont.)

O A system that implements the operation of eq.(1) as an
ideal continuous-to-discrete-time (C/D) converter is

shown below:
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x[n)=x.(nT)

The sampling operation is generally not invertible i.e.,

given the output x[n], it is not possible in general to

reconstruct x (t).



Periodic Sampling(cont.)

O It is convenient to represent the sampling process
mathematically in two stages.

O The stages consist of an impulse train modulator
followed by conversion of the impulse train to a

sequence.
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Periodic Sampling(cont.)
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Frequency Domain
Representation of Sampling

O To derive the frequency domain relation between the
input and output of an ideal C/D converter.

O Let us first consider the conversion of x (t) to x (t)
through modulation of the periodic impulse train:

s(t)=205(z_m

O  Where O (t) is the unit impulse function or Dirac delta
function. We modulate s(t) with x (t) ,

x, (1) = x.(1)s(1)



Frequency Domain Representation
of Sampling (cont.)

O Through the sifting property of the impulse function, x (t)

can be expressed as: V.
= E x.(nT)o(t-nT)

n=—0oo

O Let us now consider the Fourier transform of x (t).

O x(t) is the product of x (t) and s(t), the Fourier transform of
X (t) is the convolution of the Fourier transforms X (i) and

SGQ).

O  The Fourier transform of a periodic impulse train is a
periodic impulse train.

O Specifically, g &
S(/9Q) == Y 6(Q-kQ))
k=—o00



Frequency Domain Representation
of Sampling (cont.)

O Where Q =21/T is the sampling frequency in radians/s.
Since, i

XS(jQ)=EXC(jQ)*S(jQ)

O  Where * denotes the operation of continuous-variable
convolution. It follows that:

XS(jQ)=% i X, (j(2-4Q,))

k=—00

O Above equation provides the relationship between the
Fourier transforms of the input and the output of the
impulse train modulator.



Frequency Domain Representation
of Sampling (cont.)

O  The figures below depicts the frequency domain
representation of impulse train of samples.
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O  The above figure represents a band limited Fourier
transform whose highest nonzero frequency
component in X (j§2).



Frequency Domain Representation
of Sampling (cont.)

O  Figure below shows the periodic impulse train S(j €2).
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Frequency Domain Representation
of Sampling (cont.)
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Frequency Domain Representation
of Sampling (cont.)

O x(t) can be recovered from x (t) with an ideal low pass
filter.

O This is depicted in following figures.
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Frequency Domain Representation
of Sampling (cont.)
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Frequency Domain Representation
of Sampling (cont.)
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Aliasing

Aliasing in the frequency domain is depicted in the
following example for the simple case of a cosine signal.

The figure below shows the Fourier transform of the
signal : x (t)=cos €2 4t.
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Aliasing

O The following figure shows the Fourier transform of

x (t) with €2 <R /2.
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O Figure below shows the Fourier transform of x (t) with
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Aliasing

O The Fourier transform of the low pass filter output for
Q<R /2=m/Tand @ >1/T, respectively with
Q =Q /2, shown below:
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Aliasing

Above two figures correspond to the case of aliasing.
With no aliasing the reconstructed output is: x (t)=cos §2 .
With aliasing the reconstructed output is: x (t)=cos ( Q2 -2, )t.

That is the higher the frequency signal cos $2 ;t has taken on the
identity (alias) of the lower frequency signal cos ( Q2 -2, )t as a
consequence of the sampling and reconstruction.

This above discussion if the basis for the Nyquist sampling
theorem.



Nyquist Sampling Theorem

Let x (t) be a band limited signal with:
X, (]Q) =0 for |Q| =Q,

Then x (t) is uniquely determined by its samples x[n]=x (nT),

n=0,+1,42,... If. Q =27”2 JoN

The frequency §2 is commonly referred to as the Nyquist
frequency and the frequency 2§, that must be exceeded by the
sampling frequency is called the Nyquist rate.



Example #1

Sampling and reconstruction of a sinusoidal signal.

[f we sample the continuous time signal x (t)=cos (40001 t) with
sampling period T=1,/6000.
x|n]=x,(nT)=cos(40007xTn) = cos(w,n)

Where, 2T

In this case,
Q=27 = 12000
T
The highest frequency of the signal is: $2, = 40007

So the conditions of the Nyquist sampling theorem are satisfied and
there is no aliasing.

The Fourier transform of x (t) is:
X, (jQ) = mw6(Q-4000) + 76 (2 +4000.7)



Example #1 (cont.)
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