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Sample Rate Conversion 

!   The process of converting a signal form one rate to another is called 
sample rate conversion. 

!   Band limited interpolation can be used to go back to the continuous time 
signal from its samples. 

!   We need to change sampling rate for few applications and to obtain a new 
discrete time representation of the same continuous time signal of the 
form: x’[n]=xc(nT’) where T≠T’. 

!   The problem is to get x’[n] given x[n]. 

!   One way is to:   
!   Reconstruct the continuous time signal from x[n]. 
!   Resample the continuous time signal using new rate to get x’[n]. 
!   This requires analog processing which is often undesired. 



Sample Rate Reduction by an 
Integer Factor 

!   We reduce the sampling rate of a sequence by “sampling” it: 

!   This is accomplished with sampling rate compressor: 

!   We obtain xd[n] that is identical to what we would get by 
reconstructing the signal and resampling it with T’=MT. 

!   There will be no aliasing if: 

xd[n]= x nM[ ] = xc nMT( )
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Sample Rate Reduction by an 
Integer Factor (cont.) 

!   The sampling rate can be reduced by a factor of M without 
aliasing if the original sampling rate was at least M times the 
Nyquist rate or if the bandwidth of the sequence is first reduced 
by a factor of M by discrete time filtering. 

!   Such an operation of reducing the sampling rate is known as 
Down sampling. 



Frequency Domain Representation 
of Down Sampling 

!   Recall the DTFT of x[n]=xc(nT): 

!   The DTFT of the down sampled signal can similarly written as: 

!   Let’s represent the summation index as: 
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Frequency Domain Representation 
of Down Sampling (cont.) 

!   And finally: 

Xd e jω( ) = 1
M

X e
j ω
M
−
2πi
M

⎛

⎝
⎜

⎞

⎠
⎟⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i=0

M−1

∑



Frequency Domain Representation 
of Down Sampling: No Aliasing 



Frequency Domain Representation 
of Down Sampling: No Aliasing 



Frequency Domain Representation 
of Down Sampling w/Prefilter 



Frequency Domain Representation 
of Down Sampling w/Prefilter 



Increasing the Sampling Rate by an 
Integer Factor: Up Sampling 

!   We increase the sampling rate of a sequence interpolating it: 

!   This is accomplished with a sampling rate expander: 

!   We obtain xi[n] that is identical to what we would get by reconstructing the 
signal and resampling it with T’=T/L. 

!   Up sampling consists of two steps: 
!   Expanding: 

!   Interpolating.  
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Frequency Domain Representation 
of Expander 

!   The DTFT of xe[n] can be written as: 

!   The output of the expander is frequency scaled: 

Xe e
jω( ) = x k[ ]δ n− kL[ ]
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Frequency Domain Representation 
of Interpolator 

!   The DTFT of the desired interpolated signals is: 

!   The extrapolator output is given as: 

!   To get interpolated signal we apply the following LPF: 



Interpolator in Time Domain 

!   Xi[n] in a low-pass filtered version of x[n]. 

!   The low-pass filter impulse response is: 

!   Hence the interpolated signal is written as: 

!   Note that: 

!   Therefore the filter output can be written as: 
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Changing the Sampling Rate by 
Non-Integer Factor 

!   Combine decimation and interpolation for non-integer factors 

!   The two low-pass filters can be combined into a single one 


