Digital Signal Processing Sampling-II

Lecture-8 12-April-16

Sample Rate Conversion

- The process of converting a signal form one rate to another is called \bigcap sample rate conversion.
- Band limited interpolation can be used to go back to the continuous time \bigcirc signal from its samples.
- We need to change sampling rate for few applications and to obtain a new \bigcirc discrete time representation of the same continuous time signal of the form: $x'[n]=x_c(nT')$ where $T^*T'.$
- The problem is to get $x'[n]$ given $x[n]$. \bigcap
- One way is to: \bigcap
	- Reconstruct the continuous time signal from x[n]. \bigcirc
	- Resample the continuous time signal using new rate to get x'[n]. \bigcirc
	- This requires analog processing which is often undesired. \bigcap

Sample Rate Reduction by an Integer Factor

We reduce the sampling rate of a sequence by "sampling" it: \bigcirc $x_d[n] = x[nM] = x_c(nMT)$

This is accomplished with sampling rate compressor: \bigcap

- We obtain $x_d[n]$ that is identical to what we would get by \bigcirc reconstructing the signal and resampling it with T'=MT.
- There will be no aliasing if: π \bigcirc $=\frac{\pi}{4}$ $>$ Ω_{N} *T* ' *MT*

Sample Rate Reduction by an Integer Factor (cont.)

- The sampling rate can be reduced by a factor of M without \bigcirc aliasing if the original sampling rate was at least M times the Nyquist rate or if the bandwidth of the sequence is first reduced by a factor of M by discrete time filtering.
- Such an operation of reducing the sampling rate is known as \bigcirc Down sampling.

Frequency Domain Representation of Down Sampling

Recall the DTFT of $x[n]=x_c(nT)$: \bigcirc ∞ $j\left(\frac{\omega}{T} - \frac{2\pi k}{T}\right)$ $\left(j\left(\frac{\omega}{T}-\frac{2\pi k}{T}\right)\right)$ $\sqrt{2}$ $\left(\frac{\omega}{T} - \frac{2\pi k}{T}\right)$ $X(e^{j\omega}) = \frac{1}{T}$ $X_c\left(j\left(\frac{\omega}{T}-\frac{2\pi k}{T}\right)\right)$ ∑ \vert *T* ⎝ $\overline{ }$ ⎝ ⎠ *k*=−∞

M

T

⎣

i=0

∑

r=−∞

The DTFT of the down sampled signal can similarly written as: \bigcirc $\sum_{r}^{\infty} X_{r} \left(j \left(\frac{\omega}{T} - \frac{2 \pi r}{T} \right) \right) = \frac{1}{M'}$ $j\left(\frac{\omega}{T} - \frac{2\pi r}{T}\right)$ $\left(j\left(\frac{\omega}{T} - \frac{2\pi r}{T}\right)\right)$ ∞ $\int j\left(\frac{\omega}{MT} - \frac{2\pi r}{MT}\right)$ $\left(j\left(\frac{\omega}{MT} - \frac{2\pi r}{MT}\right)\right)$ $\sqrt{2}$ $\left(\frac{\omega}{T} - \frac{2\pi r}{T} \right)$ $\sqrt{2}$ $\left(\frac{\omega}{MT} - \frac{2\pi r}{MT}\right)$ $X_d\left(e^{j\omega}\right) = \frac{1}{T}$ $-\frac{2\pi r}{\pi}$ $X_c \left(j \left(\frac{\omega}{MT} - \frac{2\pi r}{MT} \right)$ X_c *j* $\left| \frac{\omega}{T} \right|$ ∑ \vert \vert *T* ' ⎝ *T* ' *T* ' ⎠ *MT* ⎝ ⎠ ⎝ ⎠ ⎝ $\overline{ }$ *r*=−∞ *r*=−∞ Let's represent the summation index as: \bigcirc $r = i + kM$ where $-\infty < k < \infty$ and $0 \le i < M$ $\frac{1}{T}\sum_{i=1}^{T}$ $\left[\frac{1}{T}\sum_{c}^{\infty}X_c\left(j\left(\frac{\omega}{MT}-\frac{2\pi k}{T}-\frac{2\pi i}{MT}\right)\right)\right]$ *M*−1 $j\left(\frac{\omega}{MT} - \frac{2\pi k}{T} - \frac{2\pi i}{MT}\right)$ $\left(j\left(\frac{\omega}{MT} - \frac{2\pi k}{T} - \frac{2\pi i}{MT}\right)\right)$ $X_d\left(e^{j\omega}\right) = \frac{1}{M}$ 1 $X_c \left(j \left(\frac{\omega}{MT} - \frac{2 \pi k}{T} - \frac{2 \pi i}{MT} \right) \right)$ $\sqrt{2}$ $\left(\frac{\omega}{MT} - \frac{2\pi k}{T} - \frac{2\pi i}{MT}\right)$

⎝

⎝

 $\overline{ }$

 $\overline{ }$ \vert

⎦ $\overline{}$

Frequency Domain Representation of Down Sampling (cont.)

And finally: \bigcirc

$$
X_d\left(e^{j\omega}\right) = \frac{1}{M} \sum_{i=0}^{M-1} X\left(e^{j\left(\frac{\omega}{M} - \frac{2\pi i}{M}\right)}\right)
$$

Frequency Domain Representation of Down Sampling: No Aliasing

Frequency Domain Representation of Down Sampling: No Aliasing

Frequency Domain Representation of Down Sampling w/Prefilter

Frequency Domain Representation of Down Sampling w/Prefilter

Increasing the Sampling Rate by an Integer Factor: Up Sampling

We increase the sampling rate of a sequence interpolating it: \bigcirc

$$
x_i[n] = x\left[\frac{n}{L}\right] = x_c\left(\frac{n}{L}\right)
$$

This is accomplished with a sampling rate expander: \bigcirc

- We obtain $x_i[n]$ that is identical to what we would get by reconstructing the Ω signal and resampling it with $T^2=T/L$.
- Up sampling consists of two steps: \bigcirc \lceil Expanding: \bigcirc ⎡ $\left[\frac{n}{L}\right]$ $n = 0, \pm L, \pm 2L, \dots$ *n* $\mathsf I$ ∞ $x_e[n] = \begin{cases} x \end{cases}$ ∑ $= \sum x[k]\delta[n-kL]$ ⎨ *L* $\mathsf I$ *k*=−∞ 0 *else* \lfloor
	- Interpolating. $\left($

Frequency Domain Representation of Expander

The DTFT of $x_e[n]$ can be written as: Ω

$$
X_e\left(e^{j\omega}\right) = \sum_{n=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} x[k]\delta[n-kL]\right) e^{-j\omega n} = \sum_{k=-\infty}^{\infty} x[k] e^{-j\omega L K} = X(e^{j\omega L})
$$

The output of the expander is frequency scaled: \bigcirc

Frequency Domain Representation of Interpolator

The DTFT of the desired interpolated signals is: \bigcirc

 \bigcirc The extrapolator output is given as:

To get interpolated signal we apply the following LPF: \bigcirc

Interpolator in Time Domain

- $X_i[n]$ in a low-pass filtered version of x[n]. \bigcirc
- The low-pass filter impulse response is: \bigcirc

$$
h_i[n] = \frac{\sin(\pi n/L)}{\pi n/L}
$$

Hence the interpolated signal is written as: \bigcirc

$$
x_i[n] = \sum_{k=-\infty}^{\infty} x[k] \frac{\sin(\pi(n-kL)/L)}{\pi(n-kL)/L}
$$

Note that: h_i [0] = 1 $h_i[n] = 0$ n = $\mp L, \mp 2L,...$

Therefore the filter output can be written as: \bigcirc $x_i[n] = x[n/L] = x_c(nT/L) = x_c(nT')$ for $n = 0, \pm L, \pm 2L,...$

Changing the Sampling Rate by Non-Integer Factor

Combine decimation and interpolation for non-integer factors \bigcirc

The two low-pass filters can be combined into a single one \bigcirc

