
Digital Signal Processing
Sampling-II

Lecture-8
12-April-16

Sample Rate Conversion

!   The process of converting a signal form one rate to another is called
sample rate conversion.

!   Band limited interpolation can be used to go back to the continuous time
signal from its samples.

!   We need to change sampling rate for few applications and to obtain a new
discrete time representation of the same continuous time signal of the
form: x’[n]=xc(nT’) where T≠T’.

!   The problem is to get x’[n] given x[n].

!   One way is to:
!   Reconstruct the continuous time signal from x[n].
!   Resample the continuous time signal using new rate to get x’[n].
!   This requires analog processing which is often undesired.

Sample Rate Reduction by an
Integer Factor

!   We reduce the sampling rate of a sequence by “sampling” it:

!   This is accomplished with sampling rate compressor:

!   We obtain xd[n] that is identical to what we would get by
reconstructing the signal and resampling it with T’=MT.

!   There will be no aliasing if:

xd[n]= x nM[] = xc nMT()

π
T '
=

π
MT

>ΩN

Sample Rate Reduction by an
Integer Factor (cont.)

!   The sampling rate can be reduced by a factor of M without
aliasing if the original sampling rate was at least M times the
Nyquist rate or if the bandwidth of the sequence is first reduced
by a factor of M by discrete time filtering.

!   Such an operation of reducing the sampling rate is known as
Down sampling.

Frequency Domain Representation
of Down Sampling

!   Recall the DTFT of x[n]=xc(nT):

!   The DTFT of the down sampled signal can similarly written as:

!   Let’s represent the summation index as:

X e jω() = 1T Xc j ω
T
−
2πk
T

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

k=−∞

∞

∑

Xd e jω() = 1T ' Xc j ω
T '
−
2πr
T '

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

r=−∞

∞

∑ =
1
MT

Xc j ω
MT

−
2πr
MT

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

r=−∞

∞

∑

r = i+ kM where −∞ < k <∞ and 0 ≤ i <M

Xd e jω() = 1
M

1
T

Xc j ω
MT

−
2πk
T

−
2πi
MT

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

r=−∞

∞

∑
⎡

⎣
⎢

⎤

⎦
⎥

i=0

M−1

∑

Frequency Domain Representation
of Down Sampling (cont.)

!   And finally:

Xd e jω() = 1
M

X e
j ω
M
−
2πi
M

⎛

⎝
⎜

⎞

⎠
⎟⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i=0

M−1

∑

Frequency Domain Representation
of Down Sampling: No Aliasing

Frequency Domain Representation
of Down Sampling: No Aliasing

Frequency Domain Representation
of Down Sampling w/Prefilter

Frequency Domain Representation
of Down Sampling w/Prefilter

Increasing the Sampling Rate by an
Integer Factor: Up Sampling

!   We increase the sampling rate of a sequence interpolating it:

!   This is accomplished with a sampling rate expander:

!   We obtain xi[n] that is identical to what we would get by reconstructing the
signal and resampling it with T’=T/L.

!   Up sampling consists of two steps:
!   Expanding:

!   Interpolating.

xi n[] = x n
L
⎡

⎣⎢
⎤

⎦⎥
= xc

nT
L

⎛

⎝
⎜

⎞

⎠
⎟

xe n[] =
x n
L
⎡

⎣⎢
⎤

⎦⎥
n = 0,∓L,∓2L,....

0 else

⎧

⎨
⎪

⎩
⎪

= x k[]δ n− kL[]
k=−∞

∞

∑

Frequency Domain Representation
of Expander

!   The DTFT of xe[n] can be written as:

!   The output of the expander is frequency scaled:

Xe e
jω() = x k[]δ n− kL[]

k=−∞

∞

∑
⎛

⎝
⎜

⎞

⎠
⎟

n=−∞

∞

∑ e− jωn = x k[]e− jωLK
k=−∞

∞

∑ = X e jωL()

Frequency Domain Representation
of Interpolator

!   The DTFT of the desired interpolated signals is:

!   The extrapolator output is given as:

!   To get interpolated signal we apply the following LPF:

Interpolator in Time Domain

!   Xi[n] in a low-pass filtered version of x[n].

!   The low-pass filter impulse response is:

!   Hence the interpolated signal is written as:

!   Note that:

!   Therefore the filter output can be written as:

hi n[] =
sin πn / L()
πn / L

xi n[] = x k[]
sin π n− kL() / L()
π n− kL() / Lk=−∞

∞

∑
hi 0[] =1

hi n[] = 0 n = ∓L, ∓ 2L,...

xi n[] = x n / L[] = xc nT / L() = xc nT '() for n = 0, ∓ L, ∓ 2L,...

Changing the Sampling Rate by
Non-Integer Factor

!   Combine decimation and interpolation for non-integer factors

!   The two low-pass filters can be combined into a single one

