Digital Signal Processing A-to-D & D-to-A Conversion

Lecture-9 13-April-16

Ideal Conversion

Until now we assumed ideal D/C and C/D conversion: \bigcirc

- However, in practical: \bigcirc
	- Continuous time signals are not precisely band limited. \bigcap
	- Ideal filters cannot be realized. \bigcap
	- The ideal C/D and D/C converters can only be approximated by devices. \bigcirc
- Shown below: \bigcap

Prefiltering to Avoid Aliasing

- It is desirable to minimize the sampling rate, i.e., minimizing amount of \bigcap data to process.
- If the input is not band limited or if the Nyquist frequency is too high, \bigcirc prefiltering may be necessary.
- Frequencies we don't expect in any signal only contribute as noise. \bigcap
- To avoid aliasing the input signal must be forced to be band limited to \bigcap frequencies below one-half the desired sampling rate.
- This can be accomplished by low pass filtering the continuous time signal \bigcirc prior to C/D conversion.
- That filters is known as antialiasing filter. \bigcap
- Shown in the following figure below: \bigcap

Prefiltering to Avoid Aliasing

- Frequency response of Anti-aliasing filter is: \bigcirc \lceil $H_{aa}(j\Omega) = \begin{cases} 1 & |\Omega| < \Omega_c < \pi/T \\ 0 & |\Omega| > \Omega \end{cases}$ \vert $\{$ 0 $|\Omega| > \Omega_c$ $\overline{\mathcal{L}}$
- The output of the antialiasing filter $x_a(t)$ to the output $y_r(t)$ will always behave as a linear time-invariant system.
- The input to the C/D converter $x_a(t)$ is forced by the antialiasing \bigcirc filter to be band limited to frequencies below π/T radians/s.
- In this case the effective response is: \bigcirc

$$
H_{\text{eff}}(j\Omega) = \begin{cases} H(e^{j\Omega T}) & |\Omega| < \Omega_c \\ 0 & |\Omega| > \Omega_c \end{cases}
$$

Prefiltering to Avoid Aliasing

- In practice the frequency response $H_{aa}(j\Omega)$ cannot be ideally band \bigcirc limited but can be made smaller so that aliasing is minimized.
- In this case the overall frequency response of the system is: \bigcap $H_{\text{eff}}(j\Omega) \approx H_{\text{aa}}(j\Omega)H(e^{j\Omega T})$
- This would require sharp-cutoff analog filters which are expensive.

Oversampled A/D Conversion

- Apply a very simple antialiasing filter that has a gradual cutoff with significant attenuation at $M\Omega_{N}$.
- Use higher sampling rate than required sampling rate.
- Implement sharp antialiasing filtering in the discrete-time domain.
- Down sample the desired sampling rate.

Example

 \mathcal{A}

Analog-to-Digital Conversion

- An ideal C/D converter converts a continuous-time signal into a \bigcirc discrete-time signal, where each sample is known with infinite precision.
- In practice C/D converters are implemented as the cascade of:

- The sample and hold device holds current/voltage constant.
- The A/D converter converts current/voltage into finite precisions \bigcirc number.

Analog-to-Digital Conversion (cont.)

The ideal sample and hold device has the output: \bigcirc

$$
x_0(t) = \sum_{n=-\infty}^{\infty} x[n]h_0(t - nT) \qquad h_0(t) = \begin{cases} 1, & 0 < t < T \\ 0, & else \end{cases}
$$

Sample and Hold

An ideal sample and hold is equivalent o impulse train modulation \bigcirc followed by linear filtering with zero-order-hold system. As shown below: Sample and hold

Time-domain representation of sample and hold operation is:

A/D Converter Model

A/D converter can be modeled as:

- The C/D converter represent the sample-hold-operation.
- Quantizer transforms input into a finite set of numbers. $\hat{x}[n] = Q(x[n])$
- Mostly uniform quantizers are used.

Uniform Quantizer

 $\mathcal{L}^{\mathcal{A}}$

2's Complement Numbers

- Representation for signed numbers in computers. \bigcirc
- $-a_0 2^B + a_1 2^{B-1} + ... + a_B 2$ $B - 1$ 0 Integer 2's complement \bigcirc B
- $\frac{1}{1}$ a₀2⁰ + a₁2⁻¹ + ... + a_B2⁻ 1 B Fractional 2's complement \bigcap B
- Example: B+1=3 bit 2's complement numbers \bigcirc

Example

Quantization Error

- Quantization error is defined as: **e**^[n] = $\hat{x}[n]$ x^[n] Difference between the original and quantized value.
- If the quantization step is Δ the quantization error will satisfy: \bigcirc $-\Delta/2 < e$ $n < \Delta/2$
- A simplified but useful model of the quantizer is depicted below:

Quantization Error (cont.)

- The statistical representation of quantization error is based on the \circ following assumptions:
	- The error sequence e[n] is a sample sequence of a stationery random \bigcirc process.
	- The error sequence is uncorrelated with the sequence $x[n]$. \bigcirc
	- The random variables of the error process are uncorrelated i.e., the \bigcap error is a white noise process.
	- The probability distribution of the error process is uniform over the \bigcirc range of quantization error.

D/C Conversion

Perfect reconstruction requires filtering with ideal LPF \bigcirc $j\Omega$ T $_{r}(\mathrm{j}\Omega)=X(e^{\mathrm{j}\Omega^{\intercal}})H_{r}(\mathrm{j}\Omega)$ $X_r(j\Omega) = X(e^{j\Omega T})H_r(j\Omega)$ $\mathsf{X}(\mathsf{e}^{\mathrm{j}\Omega^{\mathsf{T}}})$: DTFT of sampled signal $\mathsf{X}_\mathsf{r}(\mathsf{j}\Omega)$: FT of reconstructed signal

The ideal reconstruction filter

$$
H_r(j\Omega) = \begin{cases} T & |\Omega| < \pi/T \\ 0 & |\Omega| > \pi/T \end{cases}
$$

The time domain reconstructed signal is

$$
x_{r}(t) = \sum_{n=-\infty}^{\infty} x[n] \frac{\sin[\pi(t - nT)/T]}{\pi(t - nT)/T}
$$

In practice we cannot implement an ideal reconstruction filter \bigcirc

D/A Conversion

The practical way of D/C conversion is an D/A converter \bigcirc

It takes a binary code and converts it into continuous-time output

$$
x_{\text{DA}}(t) = \sum_{n=-\infty}^{\infty} X_m \hat{x}_{\text{B}}[n] h_0(t - nT) = \sum_{n=-\infty}^{\infty} \hat{x}[n] h_0(t - nT)
$$

Using the additive noise model for quantization

$$
x_{DA}(t) = \sum_{n=-\infty}^{\infty} x[n]h_0(t - nT) + \sum_{n=-\infty}^{\infty} e[n]h_0(t - nT) = x_0(t) + e_0(t)
$$

The signal component in frequency domain can be written as

 $X_{0}(j\Omega) = X(e^{j\Omega T})H_{0}(j\Omega)$ 0

D/A Conversion (cont.)

So to recover the desired signal component we need a compensated \bigcirc reconstruction filter of the form

$$
\widetilde{H}_r(j\Omega) = \frac{H_r(j\Omega)}{H_0(j\Omega)}
$$

Compensated Reconstruction Filter

The frequency response of zero-order hold is \bigcirc

$$
H_0(j\Omega) = \frac{2\sin(\Omega T/2)}{\Omega}e^{-j\Omega T/2}
$$

Therefore the compensated reconstruction filter should be \bigcirc

$$
\widetilde{H}_r(j\Omega) = \begin{cases}\frac{\Omega T/2}{\sin(\Omega T/2)}e^{j\Omega T/2} & |\Omega| < \pi/T\\0 & |\Omega| > \pi/T\end{cases}
$$

Compensated Reconstruction Filter (cont.)

