

Department of Electrical Engineering Program: B.E. (Electrical) Semester – Spring 2016

EL-322 Digital Signal Processing

Assignment – 4 & 5 Marks: 20 **Due Date: 01/05/2016** Handout Date: 25/05/2016

Question # 1:

- a) We wish to design a discrete time low pass filter using the bilinear transformation on a continuous-time ideal low pass filter. Assume that the continuous time prototype filter has cutoff frequency $\Omega_c = 2\pi (2000) rad/s$ and we choose the bilinear transformation parameter T=0.4ms. What is the cutoff frequency ω_c for the resulting discrete-time filter?
- **b**) For the analog transfer function

$$H_a(s) = \frac{2}{(s+1)(s+3)}$$

Determine H (z) if T=1s, using Impulse Invariance method.

Question # 2:

We wish to design an FIR low pass filter satisfying the specifications:

 $\begin{array}{ll} 0.98 < H(e^{j\omega}) < 1.02, & 0 \le |\omega| \le 0.63\pi \\ -0.15 < H(e^{j\omega}) < 0.15, & 0.65 \le |\omega| \le \pi \end{array}$

By applying a Kaiser window to the impulse response $h_d(n)$ for the ideal discrete time low pass filter with cutoff $\omega_c = 0.64\pi$. Find the values of β and M required to satisfy this specification. ($\delta = 0.02$).

Good Luck