Digital Signal Processing Transform Analysis of LTI Systems

Lecture-10 19-April-16

Transform Analysis of LTI Systems

For LTI systems we can write: \bigcirc

$$
y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k] = x[n] * h[n]
$$

In z-transform the input output relation can be written as: \bigcirc

$$
Y(z) = H(z)X(z)
$$

Where $H(z)$ is the system function.

LTI system is completely characterized by its system function or \bigcirc equally its impulse response.

Frequency Response of LTI Systems

- The frequency response $H(e^{j\omega})$ of an LTI system is defined as the \bigcirc complex gain (Eigen value) that the system applies to the complex exponential input (Eigen function) $e^{j\omega n}$.
- The Fourier transform of the system input and output are therefore \bigcirc $\text{related by: } Y\left(e^{j\omega}\right) = H\left(e^{j\omega}\right)X\left(e^{j\omega}\right)$
- In terms of magnitude and phase, \bigcirc $\left| Y(e^{j\omega}) \right| = \left| H(e^{j\omega}) \right| X(e^{j\omega})$ $\angle Y(e^{j\omega}) = \angle H(e^{j\omega}) + \angle X(e^{j\omega})$

Where $|H(e^{j\omega})|$ is magnitude response or gain of the system and $\langle H(e^{j\omega})\rangle$ is the phase response or phase shift.

Ideal Low Pass Filter

- Frequency components of the input are suppressed in the output if \bigcirc $|H(e^{j\omega})|$ is small at those frequencies.
- The ideal low pass filter is defined as the LTI system with frequency \bigcap response: 1 \lceil ω) = $\begin{cases} 1 & |\omega| < \omega \\ 0 & | \end{cases}$ $\mathsf I$ j_{ω} | $-$ | ω | $\sim \omega_c$ H_{in} e $(e^{j\omega}) = \begin{cases}$ ⎨ $\ln (C) - \frac{1}{10}$ $\omega_{\rm c}$ < $|\omega| \leq \pi$

c

- $\bigcap H_{\text{lo}}(e^{j\omega})$ is also periodic with period 2π .
- Its impulse response for $-\infty$ is: \bigcap

$$
h_{lp}\left[n\right] = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega = \frac{1}{2\pi} \left[\frac{1}{jn} e^{j\omega n} \right]_{-\omega_c}^{\omega_c}
$$

$$
= \frac{1}{\pi n} \frac{1}{2j} \left(e^{j\omega_c n} - e^{-j\omega_c n} \right) = \frac{\sin(\omega_c n)}{\pi n}
$$

Ideal Low Pass Filter (cont.)

Its magnitude and phase are: \bigcirc

Ideal low pass filter is non-causal.

- The phase response of ideal low pass filter is specified to be zero.
- If it were not zero, the low-frequency band selected by the filter \bigcirc would also have phase distortion.

Ideal High-Pass Filter

The ideal high-pass filter is defined as: \bigcirc

$$
H_{hp}(e^{j\omega}) = \begin{cases} 0 & |\omega| < \omega_c \\ 1 & \omega_c < |\omega| \le \pi \end{cases}
$$

On Since, $H_{hp}(e^{j\omega}) = 1 - H_{lp}(e^{j\omega})$ its frequency response is:

$$
h_{hp}[n] = \delta[n] - h_{lp}[n] = \delta[n] - \frac{\sin \omega_c n}{\pi n}
$$

The ideal high-pass filter passes the frequency band $\boldsymbol{\omega}_{\rm c} \!\! <\!\! \boldsymbol{\omega} \!\! \leq \!\! \boldsymbol{\pi}$ \bigcirc undistorted and rejects frequency below ω_c .

Phase Distortion & Delay

 h_{id} $\lceil n \rceil = \delta \lceil n - n_d \rceil$

- Consider the ideal delay with impulse response
- And the frequency response is:

Or, $H_{id}\left(e^{j\omega}\right)=e^{-j\omega n_d}$

$$
|H_{id}(e^{j\omega}) = 1
$$

\n
$$
\angle H_{id}(e^{j\omega}) = -\omega n_d \qquad |\omega| < \pi
$$

- The phase distortion of the ideal delay is therefore a linear \bigcirc function of ω .
- In many applications delay distortion would be considered a rather \bigcirc mild form of phase distortion, since its effect is only to shift the sequence in time.

Phase Distortion & Delay (cont.)

- A filter with linear phase response can be viewed as a cascade of a \bigcirc zero-phase filter, followed by a time shift or delay.
- The ideal low-pass filter with phase distortion would be defined as: \bigcap

$$
H_{\mid p}(e^{j\omega}) = \begin{cases} e^{-j\omega n_d} & \text{if } \omega < \omega_c \\ 0 & \text{if } \omega_c < |\omega| \le \pi \end{cases}
$$

With impulse response: \bigcirc

$$
h_{\text{lp}}[n] = \frac{\sin \omega_{\text{c}}(n - n_{\text{d}})}{\pi(n - n_{\text{d}})}
$$

- Filters high-frequency components and delays signal by n_d .
- Linear-phase ideal low-pass filters is still not implementable.

Phase Distortion & Delay (cont.)

- A convenient measure of the linearity of the phase is the group delay.
- The basic concept of group delay relates to the effect of the phase \bigcap on a narrowband signal.

System Response for LCCD Systems

- Ideal filters cannot be implemented with finite computation.
- Therefore we need approximations to ideal filters.
- Constant-coefficient difference equations are: \bigcirc
	- General to represent most useful systems.
	- Implementable.
	- LTI and causal with zero initial conditions.

$$
\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]
$$

The z-transform is useful in analyzing difference equations.

System Response for LCCD Systems

Taking z-transform of both sides: \bigcirc

$$
\sum_{k=0}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z)
$$

$$
\left(\sum_{k=0}^{N} a_k z^{-k}\right) Y(z) = \left(\sum_{k=0}^{M} b_k z^{-k}\right) X(z)
$$

The system function for a system that satisfies a difference equation \bigcirc of the required form is therefore,

$$
H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}} = \left(\frac{b_0}{a_0}\right) \frac{\prod_{k=1}^{M} (1 - c_k z^{-1})}{\prod_{k=1}^{N} (1 - d_k z^{-1})}
$$

2

3

z

 $\overline{ }$ \vert

4

Given the system function: \bigcirc $H(z) = \frac{(1+z^{-1})}{(1+z^{-1})^2}$ $\begin{pmatrix} 1 & 1 \end{pmatrix}$ $\left(1-\frac{1}{2}z^{-1}\right)$ $\begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$ $\left(1+\frac{3}{4}z^{-1}\right)$ $1-\frac{1}{2}$ *z* $\|1+$ ⎝ 2 $\overline{ }$ ⎝

The corresponding difference equation can be expressed as: \bigcirc

$$
H(z) = \frac{Y(z)}{X(z)} = \frac{1 + 2z^{-1} + z^{-2}}{1 + \frac{1}{4}z^{-1} + \frac{3}{8}z^{-2}}
$$

On Therefore,

$$
\left(1 + \frac{1}{4}z^{-1} + \frac{3}{8}z^{-2}\right)Y(z) = \left(1 + 2z^{-1} + z^{-2}\right)X(z)
$$

And the difference equation is: \bigcirc

$$
y[n] + \frac{1}{4}y[n-1] + \frac{3}{8}y[n-2] = x[n] + 2x[n-1] + x[n-2]
$$

Stability & Causality

- A difference equation does not uniquely specify the impulse response of a LTI system.
	- Need to know the ROC.
- Properties of system gives clues about the ROC.
- Causal systems must be right sided.
	- ROC is outside the outermost pole.
- Stable system requires absolute summable impulse response:

 $\sum |h[n] < \infty$ ∞ $k = -\infty$ hn

- Absolute summability implies existence of DTFT. \bigcirc
- DTFT exists if unit circle is in the ROC.
- Therefore stability implies that the ROC include the unit circle.

Stability & Causality

Causal and stable systems have all poles inside unit circle. \bigcap

- Causal hence the ROC is outside outermost pole.
- Stable hence unit circle included in ROC. \bigcap
- This means outermost pole is inside unit circle. \bigcirc
- Hence all poles are inside unit circle. \bigcirc

Consider the LTI system with input and output related through the difference equation:

$$
y[n] - \frac{5}{2}y[n-1] + y[n-2] = x[n]
$$

Frequency response $H(z)$ is given by:

$$
H(z) = \frac{1}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - 2z^{-1}\right)}
$$

There are 3 choices of ROC:

- Causal: ROC outside of outermost pole |z|>2 (but then not stable).
- Stable: ROC such that $1\frac{2}{|z|}$ < 2. (but then not causal).
- If $|z|$ <1/2 then the system is neither causal nor stable. \bigcirc

Example #2 (cont.)

For a causal and stable system the ROC must be outside the \bigcirc outermost pole and include the unit circle. This is only possible if all the poles are inside the unit circle.

Inverse System

The system $H_i(z)$ is the inverse system to $H(z)$ if: \bigcirc $G(z) = H(z)H_i(z) = 1$ Which implies that: \bigcirc

$$
H(z) = \frac{1}{H_i(z)}
$$

The time-domain equivalent is: \bigcap

$$
g[n] = h[n] * h_i[n] = \delta[n]
$$

If it exists the frequency response of the inverse system is: \bigcirc

$$
H_i\left(e^{j\omega}\right)=\frac{1}{H\left(e^{j\omega}\right)}
$$

Inverse System

- Not all systems have an inverse: zeros cannot be inverted. \circ
- The ROC of $H(z)$ and $H_i(z)$ must overlap. \bigcirc

- Inverse system for first order system: \bigcap
- Let $H(z)$ be: $H(z) = \frac{1 - 0.5z^{-1}}{1 - 0.9z^{-1}}$ $1 - 0.9z^{-1}$
- With ROC $|z| > 0.9$. Then $H_i(z)$ is: \bigcirc $H_i(z) = \frac{1 - 0.9z^{-1}}{1 - 0.5z^{-1}}$ $1 - 0.5z^{-1}$
- Since H_i(z) has only one pole, there are only two possibilities for its ROC, and \bigcap the only choice for the ROC of $H_i(z)$ that overlaps with $|z| > 0.9$ is $|z| > 0.5$.
- Therefore the impulse response of the inverse system is: \bigcap

$$
h_i[n] = (0.5)^n u[n] - 0.9(0.5)^{n-1} u[n-1]
$$

In this case the inverse system is both causal and stable. \bigcirc

Minimum Phase

- A LTI system is stable and causal with a stable and causal inverse if \circ and only if both the poles and zeros of H(z) are inside the unit circle.
- Such systems are called minimum phase systems. \bigcirc

Impulse Response for Rational System Functions

- If a system has a rational transfer function, with at least one non-zero pole of \bigcap $H(z)$ that is not cancelled by a zero, then there will always be a term corresponding to an infinite length sequence in the impulse response.
- Such a systems are called infinite impulse response (IIR) systems. \bigcap
- If a system has no poles except at $z=0$, then: \bigcirc

$$
H(z) = \sum_{k=0}^{M} b_k z^{-k}
$$

In this case the system is determined to within a constant multiplier by its zeros, \bigcap so the impulse response has a finite length:

$$
h[n] = \sum_{k=0}^{M} b_k \delta[n-k] = \begin{cases} b_n & 0 \le n \le M \\ 0 & otherwise \end{cases}
$$

The impulse response is finite in length and the system is called a finite impulse \bigcap response (FIR) system.

- A first order IIR system: \bigcirc
- Given a causal system satisfying the difference equation: \bigcap

$$
y[n] - ay[n-1] = x[n]
$$

The system function is: (by inspection) \bigcap $H(z) = \frac{1}{1-z}$ $\frac{z}{-1} = \frac{z}{z}$, $|z| > |a|$ 1− *az z* − *a*

The condition for stability is $|a|$ < 1. The inverse z-transform is: \bigcap $h[n] = a^n u[n]$

- A simple FIR system:
- Consider the truncated impulse response: \bigcirc \lceil $\overline{}$ $h[n] = \begin{cases} a^n & 0 \le n \le M \\ 0 & n \end{cases}$ ⎨ 0 *otherwise* $\overline{\mathcal{L}}$
- The system function is: \bigcirc

$$
H(z) = \sum_{n=0}^{M} a^n z^{-n} = \frac{1 - a^{M+1} z^{-M-1}}{1 - a z^{-1}}
$$

The zeros of the numerator are at: \bigcap

$$
z_k = a e^{j2\pi k/(M+1)}, \ \ k = 0, 1, \dots, M
$$

Example #5 (cont.)

- With a assumed real and positive, the pole at $z=a$ is cancelled by a \bigcirc zero.
- The pole-zero plot for the case of M=7 is therefore given by: \bigcirc

Example #5 (cont.)

The difference equation satisfied by the input and output of the \bigcirc LTI system is the convolution:

$$
y[n] = \sum_{k=0}^{M} a^k x[n-k]
$$

The input and output also satisfy the difference equation: \bigcirc

$$
y[n] - ay[n-1] = x[n] - a^{M+1}x[n-M-1]
$$