-Digital Signal Processing-Representation of Linear Digital Networks

Lecture-11 03-May-16

What are Poles & Zeros?

Let's say we have a transfer function defined as a ratio of two \bigcirc polynomials:

$$
H(s) = \frac{N(s)}{D(s)}
$$

- Where N(s) and D(s) are simple polynomials. \bigcap
- Zeros are the roots of $N(s)$ obtained by setting $N(s)=0$ and solving for s. \bigcirc
- Poles are the rots of $D(s)$ obtained by setting $D(s)=0$ and solving for s. \bigcap
- Note: a transfer function must not have more zeros than poles i.e., the \bigcap polynomial order of D(s) must be greater than or equal to the polynomial order of N(s).
- The polynomial order of a function is the value of the highest exponent \bigcirc in the polynomial.

Consider the transfer function: \bigcap

$$
H(s) = \frac{s+2}{s^2+0.25}
$$

The numerator $N(s)$ and denominator $D(s)$ are: \bigcap $N(s) = s + 2$

$$
D(s) = s^2 + 0.25
$$

Set N(s) to zero and solve for s:

$$
N(s) = s + 2 = 0 \Rightarrow s = -2
$$

We have a zero at $s=2$. now set $D(s)$ to zero and solve for s to obtain the poles of the equation:

$$
D(s) = s^2 + 0.25 = 0 \Rightarrow s = +i\sqrt{0.25}, -i\sqrt{0.25}
$$

- Simplifying gives us the poles at $\div i/2$ and $\div i/2$. \bigcap
- Remember, s is a complex variable and it can therefore take imaginary \bigcirc and real values.

Digital Networks

- We discussed LTI systems that are representable by linear \bigcirc constant difference equations.
- As we defined previously the Nth order difference equation that \bigcirc corresponds to the linear combination of delayed output sequences equals to the linear combination of delayed input sequences.

$$
y(n) - \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)
$$

$$
y(n) = \sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)
$$

Digital Networks

There are three basic operations are involved in above equations. \circ

- Delay \bigcap
- Multiplication \bigcirc
- Addition \bigcap
- We need graphical representation of above mentioned operations \bigcirc which will combine together into a digital network.

- If we have first order differential equation: $y(n)=ay(n-1)+x(n)$ \bigcirc
- Solution: \bigcirc
- The digital network in block diagram notation for the above \bigcirc difference equation is as follows:

Signal Flow Graphs

- A network of directed branches which are connected in nodes. \bigcirc
- In a signal flow graph we have nodes & directed branches (with \bigcirc arrows on them).
- Nodes will be numbered and a variable will be associated with it. \bigcirc

Signal Flow Graphs

- Nodes are known as network nodes. \bigcirc
- There are also source nodes, which is a node that has no branches coming into it only have the branches leaving it.
- And we have opposite node that is sink node, which has no \bigcirc branches going out of it and has only branches coming to it.
- Source nodes represents the input to the network and sink node \bigcirc represents the output.
- Source nodes, sink nodes and simple branch gains in the signal \bigcirc flow graph are shown below:

Signal Flow Graphs

The linear equations represented by the figure are as follows: \bigcirc $w_1[n] = x[n] + aw_2[n] + bw_2[n]$ $w_2[n] = cw_1[n]$ $y[n] = dx[n] + ew_2[n]$

Since these are all linear operations, it is possible to use signal \bigcirc flow graph notation to depict algorithms for implementing LTI discrete time systems.

Linear Signal Flow Graph

Example: \circ

Linear Signal Flow Graph (cont.)

The equations represented by above figures are as follows: \bigcirc

$$
w_1[n] = aw_4[n] + x[n] \rightarrow (1)
$$

\n
$$
w_2[n] = w_1[n] \rightarrow (2)
$$

\n
$$
w_3[n] = b_0 w_2[n] + b_1 w_4[n] \rightarrow (3)
$$

\n
$$
w_4[n] = w_2[n-1] \rightarrow (4)
$$

\n
$$
y[n] = w_3[n] \rightarrow (5)
$$

- The comparison between the first figure and the third figure shows that \bigcirc there is a direct correspondence between branches in the block diagram and branches in the flow graph.
- The important difference b/w the two is that nodes in the flow graph \bigcirc represent both branching points and adders whereas in the block diagram a special symbol is used for adders.

Linear Signal Flow Graph (cont.)

- Above equations (1 to 5) define a multistep algorithm for \bigcirc computing the output of the LTI system from the input sequence $x[n]$.
- They cannot be computed in arbitrary order. \bigcirc
- Equations (2) and (5) simply require renaming variables. \bigcirc
- Eq.(4) represents the updating of the memory of the system. \bigcirc
- It would be implemented simply by replacing the contents of the \bigcirc memory register representing $w_4[n]$ by the value of $w_2[n]$, but this would have to be done consistently either before and after the evaluation of all the other equations.

Linear Signal Flow Graph (cont.)

- Initial rest conditions would be imposed in this case by defining \bigcirc $w_2[-1] = 0$ or $w_4[0] = 0$.
- The flow graph represents a set of difference equations, with one \bigcirc equation being written at each node of the network.
- In the figure given in example we can eliminate some of the variables \bigcirc rather easily to obtain the pair of equations:

 $w_2[n] = aw_2[n-1] + x[n]$ $y[n] = b_0 w_2[n] + b_1 w_2[n-1]$

- The manipulation of the difference equations of a flow graph is \bigcirc difficult when dealing with the time domain variables, due to feedback of delayed variables.
- In such cases it is always possible to work with the z-transform \bigcirc representation wherein all branches are simple gains.

Determination of the system function from a flow graph: \bigcap

To illustrate the use of the z-transform in determining the system function \bigcap from a flow graph consider the following figure:

Example #2 (cont.)

- These are the equations that would be used to implement the \bigcirc system in the form described by the flow graph.
- According to z-transform representation, above equations will \bigcirc become: $W[7]$ $W[-]$ $V[-]$ \rightarrow *eq.*(2.1*a*)

$$
w_1[z] = w_4[z] - \lambda [z] \rightarrow eq. (2.1a)
$$

\n
$$
W_2[z] = aW_1[z] \rightarrow eq. (2.2b)
$$

\n
$$
W_3[z] = X[z] + W_2[z] \rightarrow eq. (2.3c)
$$

\n
$$
W_4[z] = z^{-1}W_3[z] \rightarrow eq. (2.4d)
$$

\n
$$
Y[z] = W_4[z] + W_2[z] \rightarrow eq. (2.5e)
$$

 \circ We can eliminate W₁(z) and W₃(z) from this set of equations by substituting eq. $(2.1a)$ into eq. $(2.2b)$ and eq. $(2.3c)$ into eq. $(2.4d)$, obtaining:

Example #2 (cont.)

$$
W_2[z] = a(W_4[z] - X[z]) \rightarrow eq.(2.22a)
$$

\n
$$
W_4[z] = z^{-1}(X[z] + W_2[z]) \rightarrow eq.(2.44b)
$$

\n
$$
Y[z] = W_4[z] + W_2[z] \rightarrow eq.(2.55c)
$$

Eqs.(2.22a) and (2.44b) can be solved for $W_2(z)$ and $W_4(z)$, \bigcirc yielding: $W_2[z] = \frac{a(z^{-1}-1)}{1-z^{-1}}$ [−]¹ *X*(*z*),→ *eq*.(2.23*a*) 1− *az* −1

$$
W_4[z] = \frac{z^{-1}(1-a)}{1 - az^{-1}} X(z), \to eq.(2.23b)
$$

By substituting above equations in $Y(z)$ leads to: \bigcirc $\sqrt{2}$ \setminus $Y[z] = \frac{a(z^{-1}-1) + z^{-1}(1-a)}{1-z^{-1}}$ $X(z) = \left(\frac{z^{-1} - a}{1 - az^{-1}}\right)$ $\sqrt{2}$ $\left(\frac{z^{-1}-a}{1-z^{-1}}\right)$ $\overline{}$ $\overline{}$ $X(z) \rightarrow eq. (2.6)$ $\mathsf I$ $1 - az^{-1}$ $1 - az^{-1}$ ⎝ $\overline{ }$ ⎝ ⎠

Example #2 (cont.)

Therefore the system function of the flow graph is: \bigcirc

$$
H[z] = \frac{z^{-1} - a}{1 - az^{-1}}
$$

For which it follows that the impulse response of the system is: \bigcirc $h[n] = a^{n-1}u[n-1] - a^{n+1}u[n]$

The direct form I flow graph is as follows: \bigcirc

- Consider the discrete time system represented by the \bigcirc linear constant coefficient difference equation: $y(n) - \frac{3}{4}$ 1 *y*(*n* −1) + *y*(*n* − 2) = *x*(*n*)4 8
	- Draw a block diagram representation of the system in \bigcirc terms of adders and delay and coefficient multiplication branches.
	- Draw a linear signal flow graph representation of the \bigcap system.

Example #3 Solution

Determine the corresponding equations for the digital network \bigcirc shown below:

Example #4 Solution

$$
W_1(z) = X(z)
$$

\n
$$
W_2(z) = W_1(z) + z^{-1}W_4(z)
$$

\n
$$
W_3(z) = 2W_2(z)
$$

\n
$$
W_4(z) = 2W_1(z) + 3W_3(z)
$$

\n
$$
Y(z) = W_3(z)
$$

Determine the system functions of the two networks shown below \bigcirc and show that they have the same poles.

In figure below is indicated a digital network A with two inputs, \bigcirc $x_1(n)$ and $x_2(n)$, and two outputs $y_1(n)$ and $y_2(n)$.

The network A can be described in terms of the two part set of \bigcap equations: $Y_1(z) = H_1(z) + H_2(z) X_2(z)$

$$
Y_2(z) = H_3(z) + H_4(z)X_2(z)
$$

Example #6 (cont.)

Where,

 $H_1(z) =$ 1 $\frac{1}{1-\frac{1}{2}}$ 2 z^{-1} $H_2(z) = 1$ $H_3(z) =$ $1+2z^{-1}$ $1+$ 1 2 z^{-1} $H_4(z) =$ 1 $1+$ 1 2 z^{-1}

Example #6 (cont.)

- Draw a flow-graph implementation of the network. The \bigcirc transmittance of each branch must be a constant or a constant times $z¹$. Higher-order functions of $z¹$ cannot be used as branch transmittances.
- Solution: \bigcap
	- A flow graph in terms of H_1 , H_2 , H_3 , and H_4 can be drawn as:

Example #6 (cont.)

However we want to draw the flow-graph using branch \bigcirc transmittances which are constant or a constant times $z¹$. Thus we replace H_1 , H_2 , H_3 , and H_4 by their flow graph implementations to obtain:

