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Impulse Invariance 
!   Sample impulse response of analog filter: 

!   Note that aliasing may occur. 

!   Implementation of digital filter: 
!   Partial fraction expansion of analog transfer function (assuming all 

poles have multiplicity 1) 

!   Inverse Laplace transform: 
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Impulse Invariance (cont.) 
!   Sample impulse response: 

!   Taking Z-transform: 
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Impulse Invariance (cont.) 
!   Example: 

Ha s( ) =
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=
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Impulse Invariance Method 
Summary 

!   Preserves impulse response and shape of frequency response, if there is no 
aliasing. 

!   Desired transition bandwidths map directly between digital and analog 
frequency domains. 

!   Pass band and stop band ripple specifications are identical for both digital 
and analog filters, assuming that there is no aliasing. 

!   The final digital filter design is independent of the sampling interval 
parameter T. 

!   Poles in analog filter map directly to poles in digital filter via 
transformation. 

!   There is no such relation between the zeros in the two filters. 

!   Gain at DC in digital filter may not equal unity, since sampled impulse 
response may only approximately sum to 1. 



Pole-Zero Patterns and Frequency 
Response 

!   Pole-zero patterns and frequency response corresponding to the 
example of viewgraph a: 



Bilinear Transformation Method 
!   This technique avoids the problem of aliasing by mapping jΩ axis in the s-plane to one 

revaluation of the unit circle in the z-plane. 

!   Since -∞≤Ω≤∞ maps onto -π≤ω≤π, the transformation between the continuous-time and 
discrete-time frequency variables must be non-linear. 

!   This technique is restricted to situations in which the corresponding warping of the 
frequency axis is acceptable. 

!   This method can also be used to design low pass (LP), high pass (HP), band pass (BP) and 
band stop (BS), Butterworth, Chebyshev, Inverse-Chebyshev and Elliptic filters. 

!   If Ha(s) is the continues time transfer function the discrete time transfer function is 
detained by replacing s with: Ha s( )⇒ H z( )
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Bilinear Transformation Method 
(cont.) 
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Bilinear Transformation Method 
(cont.) 



Effect of Bilinear Transformation 
!   Illustration of effect of bilinear transformation on a piece-wise 

constant frequency response characteristic:  



Effect of Bilinear Transformation  
!   Illustration of effect of bilinear transformation on an equi-ripple 

frequency response characteristics: 



Effect of Frequency Warping 
!   Illustration of effect of frequency warping inherent in the bilinear 

transformation is: 



Frequency Selective Filters 

!   Typical frequency-selective continuous-time 
approximation are:  
!   Butterworth 

!   Chebyshev 

!   Elliptic Filters 



Butterworth Filter 
!   The Butterworth filter of order n is described by the magnitude 

square frequency response of: 

!   It has the following properties: 
!   |Hn(jΩ)|2=1 at Ω=0 
!   |Hn(jΩ)|2=1/2 at Ω=Ωc 
!   |Hn(jΩ)|2 is monotonically decreasing function of Ω. 
!   As n gets larger, |Hn(jΩ)|2  approaches an ideal low pass filter. 
!   |Hn(jΩ)|2  is called maximally flat at origin, since all order derivative 

exist and they are zero at Ω=0. 

!   The poles of a Butterworth filter lie on circle of radius Ωc in s-plane. 
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Butterworth Filter (cont.) 
Analog Butterworth Filter: Ha jΩ( )
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where Ωc → cutoff frequency

N→ order of filter

!   N effects the shape of 
frequency response. 
!   If N is larger, the 

frequency response 
tends to be flatter longer 
and drop of shorter and 
vice versa. 

!   The higher the order of 
the filter the sharper the 
drop from pass band to 
stop band region. 



Butterworth Filter (cont.) 

!   Poles at: 
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Butterworth Filter (cont.) 
1−δp( ) ≥ −1db

δs ≤ −15db

20 log10 H ej0.2π( ) ≥ −1

or H e j0.2π( ) ≥10−.05

also
20 log10 H ej0.3π( ) ≤ −15

or H e j0.3π( ) ≤10−.75



Impulse Invariant Design 

!   Neglect aliasing. 
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Impulse Invariant Design (cont.) 
Ha jΩ( )
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Impulse Invariant Design (cont.) 
!   N should be an integer so we round up N , that is N=6. 
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Impulse Invariant Design 
(cont.) 

!   The LHP poles are: 
!   Pole pair 1: 

!   Pole pair 2: 

!   Pole pair 3: 

−0.182± j 0.679( )

−0.497± j 0.497( )

−0.679± j 0.182( )



Impulse Invariant Design (cont.) 
!   Poles of transfer function: 

!   The transfer function: 

!   Mapping to z-domain: 
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