-Digital Signal Processing-Digital Filter Design-II

Lecture-15 17-May-16

Impulse Invariance

Sample impulse response of analog filter:

$$
h(n) = h_a(nT)
$$

$$
H(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} H_a \left[\frac{j\omega}{T} + \frac{j2\pi k}{T} \right]
$$

Note that aliasing may occur.

Implementation of digital filter: \bigcirc

> Partial fraction expansion of analog transfer function (assuming all \bigcirc poles have multiplicity 1)

$$
H_a(s) = \sum_{k=1}^{N} \frac{A_k}{s - s_k}
$$

Inverse Laplace transform: \bigcirc

$$
h_a(t) = \sum_{k=1}^N A_k e^{s_k t} u(t)
$$

Impulse Invariance (cont.)

Sample impulse response: \circ

$$
h(n) = h_a(nT) = \sum_{k=1}^{N} A_k e^{s_k nT} u(n)
$$

$$
h(n) = \sum_{k=1}^{N} A_k (e^{s_k T})^n u(n)
$$

Taking Z-transform: \bigcirc

$$
H(z) = \sum_{k=1}^{N} \frac{A_k}{1 - e^{s_k T} z^{-1}}
$$

Impulse Invariance (cont.)

Example: \bigcap

> $H_a(s) = \frac{(s+a)}{s}$ $(s + a)^2 + b^2$ = 1/ 2 *s* + *a* + *jb* + 1/ 2 *s* + *a* − *jb* $H(z)$ = 1/ 2 $1-e^{-aT}e^{-jbT}z$ $\frac{-1}{-1}$ + 1/ 2 $1-e^{-aT}e^{jbT}z^{-1}$ = $1 - \left(e^{-aT}\cos bT\right)z^{-1}$ $(1-e^{-aT}e^{-jbT}z^{-1})(1-e^{-aT}e^{jbT}z^{-1})$ $(1-e^{-ax}e^{bx}z^{-1})$

Impulse Invariance Method Summary

- Preserves impulse response and shape of frequency response, if there is no \bigcirc aliasing.
- Desired transition bandwidths map directly between digital and analog \bigcirc frequency domains.
- Pass band and stop band ripple specifications are identical for both digital \bigcirc and analog filters, assuming that there is no aliasing.
- The final digital filter design is independent of the sampling interval \bigcirc parameter T.
- Poles in analog filter map directly to poles in digital filter via \bigcap transformation.
- There is no such relation between the zeros in the two filters. \bigcap
- Gain at DC in digital filter may not equal unity, since sampled impulse \circ response may only approximately sum to 1.

Pole-Zero Patterns and Frequency Response
Pole-zero patterns and frequency response corresponding to the

 \circ example of viewgraph a:

Bilinear Transformation Method

- This technique avoids the problem of aliasing by mapping j Ω axis in the s-plane to one \bigcirc revaluation of the unit circle in the z-plane.
- Since ∞ \leq Ω \leq maps onto π \leq ω \leq π , the transformation between the continuous-time and \bigcirc discrete-time frequency variables must be non-linear.
- This technique is restricted to situations in which the corresponding warping of the \bigcirc frequency axis is acceptable.
- This method can also be used to design low pass (LP), high pass (HP), band pass (BP) and \bigcirc band stop (BS), Butterworth, Chebyshev, Inverse-Chebyshev and Elliptic filters.
- If $H_a(s)$ is the continues time transfer function the discrete time transfer function is \bigcirc detained by replacing s with: $H(s) \rightarrow$

$$
H_a(S) \Rightarrow H(z)
$$

\n
$$
S = \frac{2}{T} \left[\frac{1 - z^{-1}}{1 + z^{-1}} \right]
$$

\n
$$
z = \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}}
$$

Bilinear Transformation Method (cont.)

$$
for \quad z = e^{j\omega} \qquad e^{-j\frac{\omega}{2}} \left[e^{+j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}} \right]
$$

$$
s = \frac{2}{T} \left[\frac{1 - e^{-j\omega}}{1 + e^{-j\omega}} \right] = \sigma + j\Omega = \frac{2}{T} \left[\frac{2e^{-j\frac{\omega}{2}}j\sin(\omega/2)}{2e^{-j\frac{\omega}{2}}\cos(\omega/2)} \right] = \frac{2j}{T} \tan \frac{\omega}{2}
$$

which yields

$$
\Omega = \frac{2}{T} \tan \frac{\omega}{2} \quad or \quad \omega = 2 \arctan \left(\frac{\Omega T}{2} \right)
$$

*j*Ω *axis* ⇔ *unit circle*

Bilinear Transformation Method (cont.)

Effect of Bilinear Transformation

Illustration of effect of bilinear transformation on a piece-wise \bigcirc constant frequency response characteristic:

Effect of Bilinear Transformation

Illustration of effect of bilinear transformation on an equi-ripple Ω frequency response characteristics:

Effect of Frequency Warping

Illustration of effect of frequency warping inherent in the bilinear Ω transformation is:

Frequency Selective Filters

- Typical frequency-selective continuous-time \circ approximation are:
	- Butterworth
	- Chebyshev
	- Elliptic Filters \bigcirc

Butterworth Filter

The Butterworth filter of order n is described by the magnitude \bigcap square frequency response of:

$$
|H_n(j\Omega)|^2 = \frac{1}{1 + \left(\frac{\Omega}{\Omega_c}\right)^{2n}}
$$

- It has the following properties: \bigcirc
	- $|H_n(j\Omega)|^2=1$ at $\Omega=0$
	- $|H_n(j\Omega)|^2=1/2$ at $\Omega=\Omega_c$ \bigcirc
	- $|H_n(j\Omega)|^2$ is monotonically decreasing function of Ω . \bigcirc
	- As n gets larger, $|H_n(j\Omega)|^2$ approaches an ideal low pass filter. \bigcirc
	- $|H_n(j\Omega)|^2$ is called maximally flat at origin, since all order derivative \bigcirc exist and they are zero at $\Omega = 0$.

The poles of a Butterworth filter lie on circle of radius Ω_c in s-plane.

Butterworth Filter (cont.)

Analog Butterworth Filter: $|E|$

$$
H_a(j\Omega)\Big|^2 = \frac{1}{1 + \left(\frac{j\Omega}{j\Omega_c}\right)^{2N}}
$$

 $where \quad \Omega_c \rightarrow \quad cutoff \quad frequency$ *N* → *order of filter*

- \bigcap N effects the shape of frequency response.
	- \bigcirc If N is larger, the frequency response tends to be flatter longer and drop of shorter and vice versa.
	- \bigcirc The higher the order of the filter the sharper the drop from pass band to stop band region.

Butterworth Filter (cont.)

$$
H_a(S)H_a(-S) = \frac{1}{1 + \left(\frac{S}{j\Omega_c}\right)^{2N}}
$$

Poles at:

Butterworth Filter (cont.)

 $(1−\delta_p$ \geq -1 *db* $\delta_{s} \leq -15db$ $20\log_{10} |H(e^{j0.2\pi})| \geq -1$ *or* $|H(e^{j0.2\pi})|$ ≥ 10^{-.05} *also* $20 \log_{10} |H(e^{j0.3\pi})| \leq -15$ *or* $|H(e^{j0.3\pi})|$ ≤ 10^{-.75}

Impulse Invariant Design $H\left(e^{j\omega}\right)$ = 1 *T Ha j*^ω *T* + *j* 2π*k T* \lceil ⎣ $\left[\frac{j\omega}{T}+j\frac{2\pi k}{T}\right]$ ⎦ $\overline{}$ *k*=−∞ ∞ ∑ $\Omega = \frac{\omega}{T}$ *T*

Neglect aliasing.

$$
H_a(j\Omega)^2 = \frac{T^2}{1 + \left(\frac{j\Omega}{j\Omega_c}\right)^{2N}}
$$

$$
1 + \left(\frac{j \frac{0.2\pi}{T}}{j\Omega_c}\right)^{2N} = 10^{-1} \rightarrow (1)
$$

$$
1 + \left(\frac{j \frac{0.3\pi}{T}}{j\Omega_c}\right)^{2N} = 10^{1.5} \rightarrow (2)
$$

$$
N = (5.8858)
$$

$$
\Omega_c T = .70474
$$

N should be an integer so we round up N, that is $N=6$. \bigcirc

$$
1 + \left(\frac{j\frac{0.2\pi}{T}}{j\Omega_c}\right)^{2\times6} = 10^{-1}
$$

 $\Omega_cT = 0.7032$

$$
H_a(S)H_a(-S) = \frac{T^2}{1 + \left(\frac{ST}{j.7032}\right)^{2 \times 6}}
$$

 $T = 1$ $h_a(t) \leftrightarrow H_a(S)$ *ha t T* $\sqrt{2}$ ⎝ $\left(\frac{t}{T}\right)$ $\overline{ }$ \blacktriangleright \blacktriangleright $TH_a(ST)$ $h(n) = h_a(nT) = h_a(n)$

- The LHP poles are: \bigcirc
	- Pole pair 1: \bigcirc

 $-0.182 \pm j(0.679)$

Pole pair 2: \circ

−0.497± *j*(0.497)

Pole pair 3: \bigcirc

 $-0.679 \pm j(0.182)$

Poles of transfer function: \bigcap

> $S_k = (-1)^{1/12} (j\Omega_c) = \Omega_c e^{(j\pi/12)(2k+11)}$ for $k = 0,1,...,11$ $\mathbf{R}_{k} = (-1)^{1/12} (j\Omega_{c}) = \Omega_{c} e^{(j\pi/12)(2k+11)}$ for $k =$

- The transfer function:
- $H(s) = \frac{0.12093}{(s^2 + 0.364s + 0.4945)(s^2 + 0.9945s + 0.4945)(s^2 + 1.3585s + 0.4945)}$

Mapping to z-domain: \bigcirc

() 1 2 $1 \cdot 0.2577^{-2}$ 1 1 $1.06010z^{-2}$ 1 $1 - 0.9972z^{-1} + 0.257z$ 1.8557 - 0.6303z $1 - 1.0691z^{-1} + 0.3699z$ $2.1428 + 1.1455z$ $1 - 1.2971z^{-1} + 0.6949z$ $H(z) = \frac{0.2871 - 0.4466z^{-1}}{1 - 1.2971z^{-1} + 0.6949z^{-2}} + \frac{-2.1428 + 1.1455z^{-1}}{1 - 1.0691z^{-1} + 0.3699z^{-1}}$ $^{-1}$ + Ω 2577⁻ − − -1 , \bigcap 60107 $-$ − $-0.9972z^{-1}$ + $+\frac{1.8557}{1.00273}$ $-1.0691z^{-1}$ + $-2.1428 +$ $-1.2971z^{-1} + 0.6949z^{-2}$ $=\frac{0.2871-}{1.12071}$