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[mpulse Invariance

O Sample impulse response of analog filter:

h (n) =h, (nT)

O Note that aliasing may occur.

O Implementation of digital filter:

Partial fraction expansion of analog transfer function (assuming all

poles have multiplicity 1)
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Inverse Laplace transform: N
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[mpulse Invariance (cont.)

O  Sample impulse response:

h(n) =h (nT)= EAkeSk”Tu(n)

h(n)= EAk (es"T )n u(n)

N
k=1

O Taking Z-transform:




[mpulse Invariance (cont.)

O  Example:
Ha(S . (S+2a) % 1/2. ; 1/2.
(S+a) +b* s+a+jb s+a-jb
H(Z)= 1/2 i 122
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Impulse Invariance Method
Summary

Preserves impulse response and shape of frequency response, if there is no
aliasing.

Desired transition bandwidths map directly between digital and analog
frequency domains.

Pass band and stop band ripple specifications are identical for both digital
and analog filters, assuming that there is no aliasing.

The final digital filter design is independent of the sampling interval
parameter T.

Poles in analog filter map directly to poles in digital filter via
transformation.

There is no such relation between the zeros in the two filters.

Gain at DC in digital filter may not equal unity, since sampled impulse
response may only approximately sum to 1.



Pole-Zero Patterns and Frequency
Response

O Polezero patterns and frequency response corresponding to the
example of viewgraph a:
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Bilinear Transformation Method

This technique avoids the problem of aliasing by mapping j €2 axis in the s-plane to one
revaluation of the unit circle in the zplane.

Since o< § <o maps onto -T< W <T, the transformation between the continuous-time and
discrete-time frequency variables must be non-linear.

This technique is restricted to situations in which the corresponding warping of the
frequency axis is acceptable.

This method can also be used to design low pass (LP), high pass (HP), band pass (BP) and
band stop (BS), Butterworth, Chebyshev, Inverse-Chebyshev and Elliptic filters.

If H (s) is the continues time transfer function the discrete time transfer function is

detained by replacing s with: H (S) = H (Z )
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Bilinear Transformation Method
(cont.)

2 /S /2 ‘
=c7+j£2=7% eﬂ]sm(w )=ﬁtan9
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which yields

Q= gtanﬂ or = 2arctan(g)

o)

JjQ axis < unit circle



Bilinear Transformation Method

(cont.)
$m z-plane
Image of
s = j{ (unit circle)
Image of
left half-plane
w
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Effect of Bilinear Transformation

O Illustration of effect of bilinear transformation on a piece-wise
constant frequency response characteristic:
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Effect of Bilinear Transformation

O Illustration of effect of bilinear transformation on an equi-ripple
frequency response characteristics:
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Etfect of Frequency Warping

O llustration of effect of frequency warping inherent in the bilinear
transformation is:




Frequency Selective Filters

0O Typical frequency-selective continuous-time
approximation are:

Butterworth

Chebyshev
Elliptic Filters



Butterworth Filter

The Butterworth filter of order n is described by the magnitude
square frequency response of:

1, (jQ)f -

[t has the following properties:

H_(j62)|%=1 at =0

H (GR)|%=1/2 at Q=Q.

H_(j§2)|?is monotonically decreasing function of €.

As n gets larger, |H _(j2)|? approaches an ideal low pass filter.

|H_(jS2)|? is called maximally flat at origin, since all order derivative
exist and they are zero at Q2 =0.

The poles of a Butterworth filter lie on circle of radius ¢ _ in s-plane.



Butterworth Filter (cont.)

Analog Butterworth Filter:

where Q — cutoff frequency

N — order of filter

N effects the shape of
frequency response.

O If N is larger, the
frequency response
tends to be flatter longer

and drop of shorter and
vice versa.

O The higher the order of
the filter the sharper the
drop from pass band to
stop band region.




Butterworth Filter (cont.)
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Butterworth Filter (cont.)
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[mpulse Invariant Design




[mpulse Invariant Design (cont.)
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[mpulse Invariant Design (cont.)

O N should be an integer so we round up N, that is N=6.
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Impulse Invariant Design

(cont.)
O The LHP poles are:
Pole pair 1:
~0.182+ j(0.679)
Pole pair 2:
-0.497 + j(0.497)
Pole pair 3:

-0.679 = j(0.182)



[mpulse Invariant Design (cont.)

O Poles of transfer function:
s a0 ) = @ eIk S REIRE i e

O The transfer function:

H(S) 2 0.12093

(s2 + 0.364s + 0.4945)s? + 0.9945s + 0.4945)s? + 1.3585s + 0.4945)

O  Mapping to zdomain:

H(Z)= 0.2871-0.4466z" : ~-2.1428 +1.1455z™
1-1.2971z" +0.6949z> 1-1.0691z™" + 0.3699z°*
i 1.8557 -0.6303z™
1-0.9972z" +0.257z°




