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Bilinear Transform Design 
!   Bilinear transform applied to Butterworth: 

!   Apply bilinear transformation to specifications: 

!   We can assume Td=1 and apply the specifications to: 

!   To get: 
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Bilinear Transform Design (cont.) 
!   Solve N and Ωc 

!   The resulting transfer function has the following poles 

!   Resulting in 

!   Applying the bilinear transform yields 
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Chebyshev Filter 
! Equiripple in the pass band and monotonic in the stop band. 

!   Or equiripple in the stop band and monotonic in the pass band.  
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Example #1 
!   The system function of a discrete-time system is: 

!   (a): Assume that this discrete time filter was designed by the impulse 
invariance method with Td=2; i.e., h[n]=2hc(2n), where hc(t) is real. 
Find the system function Hc(s) of a continuous time filter that could 
have been the basis for the design. Is your answer unique? If not find 
another system function Hc(s). 

!   (b): Assume that H(z) was obtained by the bilinear transform method 
with Td=2 . Find the system function Hc(s) that could have been the 
basis for the design. Is your answer unique? If not find another Hc(s).  
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Example #1 Solution 
!   (a): In the impulse invariance design the poles transform as: zk=esT 

and we have the relationship: 

!   Therefore, 

!   The above solution is not unique due to the periodicity of z=ejω . A 
more general answer is: 
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Example #1 Solution (cont.) 
!   (b): Using the inverse relationship for the bilinear transform: 

!   We get: 

!   Since the bilinear transform does not introduce any ambiguity, the 
representation is unique. 
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Overview of IIR Filter Design 
!   IIR digital filter designs are based on established methods for designing analog 

filters. 

!   Approach is generally limited to frequency selective filters with ideal pass-band/
stop-band characteristics. 

!   Basic filter type is low pass. 

!   Achieve high pass or band pass via transformations. 

!   Achieve multiple stop/pass bands by combining multiple filters with single pass 
band. 



IIR Filter Design Steps 
!   Choose prototype analog filter family: 

!   Butterworth 

!   Chebyshev Type I or II 

!   Elliptic 

!   Choose analog-digital transformation method: 
!   Impulse invariance 

!   Bilinear transformation 

!   Transform digital filter specifications to equivalent analog filter specifications. 

!   Design analog filter. 

!   Transform analog filter to digital filter. 

!   Perform frequency transformations to achieve high pass or band pass filter if 
desired. 

 

 

 

 



Example #2 
!   Let |H(jΩ)|2 denote the squared magnitude function for an 

analog Butterworth filter of order 5 with a cutoff frequency Ωc of 
2π×103 . Determine and indicate in the s-plane the poles of the 
system function H(s). Assume that the system is stable and causal. 



Example #2 Solution 
!   The squared magnitude function for a fifth order Butterworth filter 

with cutoff frequency Ωc=2π×103 is given by: 

!   The poles of H(s)H(-s) are the roots of  

!   Or 
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Example #2 Solution 

!   Since H(s) corresponds to a stable, causal filter, we factor the squared magnitude 
function so that the left-half plane poles correspond to H(s) and the right-half 
plane poles correspond to H(-s). 

!   Thus the poles of H(s) are indicated below: 



Example #3 
!   Design a first order digital low pass filter with a 3dB cutoff frequency of           
ωc =0.25π by applying the bilinear transformation to the analog Butterworth 
filter: 

!   Because the 3-dB cutoff frequency of the Butterworth filter is Ωc, for a cutoff 
frequency ωc =0.25π in the digital filter, we must have: 

!   Therefore, the system function of the analog filter is: 

!   Applying the bilinear transformation to the analog filter gives: 

!   Note that the parameter Td does not enter into the design. 
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