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FIR Filter Design

FIR filters can also be designed from a frequency response
specification.

The equivalent sampled impulse response which determines the
coefficients of the FIR filter can then be found by inverse Discrete
Fourier transformation.

The frequency response of an Nth-order causal FIR filter is:

()= Shine

The design of an FIR filter mvolves finding the coefficients h(n)
that result in a frequency response that satisfies a given set of filter
specifications.



FIR Filter Design (cont.)

O  FIR filter have two important advantages over IIR filters:

They are guaranteed to be stable, even after the filter coefficients have
been quantized.

They may be easily constrained to have linear phase.



Basic Design Methods

O Windows
O Frequency Sampling

O Equiripple Design



Filter Design by Windowing

Simplest way of designing FIR filters
Method is all discrete-time no continuous-time involved

Start with ideal frequency response

(eJ‘”) E h, }9 jon hd[n] 2 zin j;Hd (ej‘” )ej(””doo

N=—0o

Choose ideal frequency response as desired response
Most ideal impulse responses are of infinite length

The easiest way to obtain a causal FIR filter from ideal is

h[n] 4 {hd[n] O=<n=<=M
0) else
More generally

hn]=h/nlwn] where  w|n]-= {1 O<ns=M

0 else



Windowing in Frequency Domain

0O  Windowed frequency response:

Hle) - 5 fH (e (e ke

O Thus, the ideal frequency response is smoothed by the discrete time
Fourier transform of the window, W(ei%).



Windowing in Frequency Domain
(cont.)

O There are many different types of windows that may be used in the
window design method, a few of which are listed below:

Rectangular
1 O<sn<N
w(n)=
0 else
Hanning or Hann window
0.5-0 5cos(2’m) Osn=N
w(n)= N
0 else
Hamming
27n
0.54-0.46cos O<sn=<N
w(n)= ( N )
{ 0 else
Black
e R 042 05005(2 )+008 s(4””) O<neh
w(n)=- N N
0 else




Windowing in Frequency Domain

(cont.)
O  Magnitude of the Fourier transform for an eight point rectangular
window:
|sin(wN/2)
8 Isin(w/2)
N=8
-2w | 2w l e




Windowing in Frequency Domain
(cont.)

The windowed version is smeared version of desired response.
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If wln]=1 for all n, then W(el®) is pulse train with 27 period.



Windowing in Frequency Domain
(cont.)

There are two methods with which we can determine the desired
frequency response :

The width of the main lobe of W(ei%).

Ideally the main lobe should be narrow and the side lobe amplitude
should be small .

However for fixed length window these cannot be minimized
independently.

General properties of windows are as follows:

As the length N of the window increases, the width of the main lobe
decreases, which results in a decrease in the transition width between pass
bands and stop bands. This relationship is given approximately by N A f=c.

The peak side lobe amplitude of the window is determined by the shape of
the window and it is essentially independent of the window length.

If the window shape is changed to decrease the side lobe amplitude, the
width of the main lobe will generally increase.



Properties of Windows

Prefer windows that concentrate around DC in frequency

Less smearing, closer approximation

Prefer window that has minimal span in time

Less coefficient in designed filter, computationally efficient

So we want concentration in time and in frequency

Contradictory requirements

Example: Rectangular window

o LT R L N sin[m(M +1)/ 2]
wie )=;e3 i~ sinjw/ 2]

(M =7)

sin (o(M + 1)/2) |

sin (w/2)

_ 2
(M + 1)

>
—’-{ Aw,, }4* Mainlobe
width




Rectangular Window

O Narrowest main lobe
47t/ (M+1)

Sharpest transitions at discontinuities in frequency

O Large side lobes
-13 dB

Large oscillation around discontinuities
O  Simplest window possible:

w[n]={1 O<n=M

0 else



Rectangular Window (cont.)

wn] Rectangular
1.0
. Hamming
| ———— Hanning
0.8 : —-—Blackman
I N\, —-—— Bartlett
|
0.6 :
|
|
0.4 |
|
|
02 |
|
// I N “~
Lene” | \"\-h..k n
0 M M
2
0
_ 20F
3
= 40
& _60
80
100 | | | |
( 0.2 0.4 0.6 0.8

Radian frequency (w)



Hanning Window

Medium main lobe
8rt/M

Side lobes
31 dB

Hamming window performs better

Same complexity as Hamming

w[n] 5 ;% [1 - cos(%)




Hanning Window (cont.)

wn] Rectangular
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Hamming Window

O  Medium main lobe
8rt/M

O  Good side lobes
41 dB

O  Simpler than Blackman

27N
w[n] O 54 - 0. 46cos(v) O<n=<M

S

0 else
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Hamming Window (cont.)

Rectangular
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Blackman Window

O Large main lobe
121/M

O Very good side lobes
57 dB

O  Complex equation:

B s cog —~ 0 D8 eos| e
win] = . M M

0 else




Blackman Window (cont.)
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Example # 1

Suppose that we would like to design an FIR linear phase low pass
filter according to the following specifications:

099 <|H(e™)[<101 0s=w|<0.197

H(e™) <001 0217 =<|w|<x

For a stop band attenuation of 20 log (0.01)= -40dB, we may use
the Hamming window.

Because the specification calls for a transition width of:
Aw=w,—w, =002

or

Af =0.01
with NAf =33

For a hamming window an estimate of the required filter order is:



Example # 1 (cont.)

Rl e

Af

Now find the unit sample response of the ideal low pass filter that
is to be windowed.

(a)s +a)p)/2=0.2n

With a cutoff frequency of “¢~ and a delay of

a=N/2=165

The unit sample response is:
sin[0.277(n-165)]
 (n-165)m

hy(n)



Kaiser Windows

Kaiser developed a family of windows that are defined by:

I [ﬁ(l—[(n—a)/a]z)m}

w(n)= 15 , Osn=M
0

Where & =N/2 and 1, is a zeroth-order modified Bessel function
of the first kind, which is:
:|2

4| (x72)
Io(x)=1+;[ o
Where S determines the shape of the window.

A kaiser window is nearly optimum in the sense of having the
most energy in its main lobe for a given side-lobe amplitude.



Kaiser Windows (cont.)

O Characteristics of the Kaiser Window as a function of S :

Parameter S8 Side Lobe Transition Stopband
(s13)) Width (NAf) | Attenuation
(dB)
2.0 -19 1.5 -29
3.0 -24 2.0 37
4.0 -30 2.6 45
5.0 -37 3.2 -54
6.0 44 3.8 63
7.0 51 4.5 12
8.0 -59 5.1 -81
9.0 07 5.7 90

10.0 14 6.4 99



Kaiser Windows (cont.)

There are two empirically derived relationships for the Kaiser
window that facilitate the use of these windows to design FIR
filters.

The first relates the stop band ripple of a low-pass filter
@ =20log(d ) to the parameter 3 :
0.1102(ct, —8.7) a. > 50

[ =

I\

0.5842 (e, —21)"" +0.07886(a, —21) 21=a, =50
0.0 a, <21

The second relates N to the transition width A f and the stop band
attenuation &,

_o, -7.95
14. 36Af

o =21

Note that if & <21 dB a rectangular window may be used.



Example #2

Suppose that we would like to design a low-pass filter with a cutoff
frequency W =1/4 , a transition width A w=0.02 7 and a stop
band ripple 0 ,=0.01. Because @& =20 log (0.01)=-40, the Kaiser

window parameter is :

B=0.5842(40-21)"" +0.07886(40-21) =34

With Af =Aw/2x=0.01 we have:
. 40-795
 14.36.(0.01)
Therefore, h(n)=h,(n)w(n)
ol

[s the unit sample response of the ideal low-pass filter.

=224




