-Digital Signal Processing-FIR Filter Design

Lecture-17 24-May-16

FIR Filter Design

- FIR filters can also be designed from a frequency response \bigcirc specification.
- The equivalent sampled impulse response which determines the \bigcirc coefficients of the FIR filter can then be found by inverse Discrete Fourier transformation.
- The frequency response of an Nth-order causal FIR filter is: \bigcap

$$
H\left(e^{j\omega}\right) = \sum_{n=0}^{N} h(n) e^{-jn\omega}
$$

The design of an FIR filter involves finding the coefficients h(n) \bigcap that result in a frequency response that satisfies a given set of filter specifications.

FIR Filter Design (cont.)

FIR filter have two important advantages over IIR filters: \bigcirc

- They are guaranteed to be stable, even after the filter coefficients have \bigcap been quantized.
- They may be easily constrained to have linear phase.

Basic Design Methods

- Windows \circ
- Frequency Sampling \bigcirc
- Equiripple Design \circ

Filter Design by Windowing

- Simplest way of designing FIR filters \bigcirc
- Method is all discrete-time no continuous-time involved \bigcap
- Start with ideal frequency response \bigcap

$$
H_d\left(e^{j\omega}\right) = \sum_{n=-\infty}^{\infty} h_d[n]e^{-j\omega n}
$$

$$
H_d(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h_d[n]e^{-j\omega n}
$$
\n
$$
h_d[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega})e^{j\omega n} d\omega
$$

- Choose ideal frequency response as desired response \bigcap
- Most ideal impulse responses are of infinite length \bigcap
- The easiest way to obtain a causal FIR filter from ideal is \bigcap

$$
h[n] = \begin{cases} h_d[n] & 0 \le n \le M \\ 0 & else \end{cases}
$$

More generally \bigcap

> $\lfloor n \rfloor$ = h $_{\rm d}$ [n]w $\lfloor n \rfloor$ where w $\lfloor n \rfloor$ \lfloor ⎨ $h[n] = h_d[n]w[n]$ where $w[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{else} \end{cases}$

Windowing in Frequency Domain

Windowed frequency response: \bigcirc

$$
H(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) W(e^{j(\omega-\theta)}) d\theta
$$

Thus, the ideal frequency response is smoothed by the discrete time \bigcirc Fourier transform of the window, $W(e^{j\omega})$.

Windowing in Frequency Domain (cont.)
There are many different types of windows that may be used in the

 \bigcap window design method, a few of which are listed below:

Windowing in Frequency Domain (cont.)

Magnitude of the Fourier transform for an eight point rectangular \bigcirc window:

Windowing in Frequency Domain (cont.)

The windowed version is smeared version of desired response. \bigcap

If w[n]=1 for all n, then $W(e^{j\omega})$ is pulse train with 2π period. \bigcap

Windowing in Frequency Domain (cont.)
There are two methods with which we can determine the desired

- \bigcap frequency response :
	- The width of the main lobe of $W(e^{j\omega})$. \bigcap
- Ideally the main lobe should be narrow and the side lobe amplitude \bigcap should be small .
- However for fixed length window these cannot be minimized \bigcap independently.
- General properties of windows are as follows: \bigcap
	- As the length N of the window increases, the width of the main lobe \bigcirc decreases, which results in a decrease in the transition width between pass bands and stop bands. This relationship is given approximately by $N\Delta f=c$.
	- The peak side lobe amplitude of the window is determined by the shape of \bigcirc the window and it is essentially independent of the window length.
	- If the window shape is changed to decrease the side lobe amplitude, the \bigcirc width of the main lobe will generally increase.

Properties of Windows

- Prefer windows that concentrate around DC in frequency \bigcap
	- Less smearing, closer approximation
- Prefer window that has minimal span in time \bigcap
	- Less coefficient in designed filter, computationally efficient \bigcap
- So we want concentration in time and in frequency \bigcirc
	- Contradictory requirements
- Example: Rectangular window \bigcirc

Rectangular Window

- Narrowest main lobe \bigcap
	- Ω 4π/(M+1)
	- Sharpest transitions at discontinuities in frequency \bigcirc
- Large side lobes \bigcirc
	- -13 dB \bigcap
	- Large oscillation around discontinuities \bigcirc
- Simplest window possible: \bigcirc

$$
w[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & else \end{cases}
$$

Rectangular Window (cont.)

Hanning Window

- Medium main lobe Ω
	- Ω 8π/M
- Side lobes
	- -31 dB
- Hamming window performs better \bigcirc

Same complexity as Hamming \bigcirc

$$
w[n] = \begin{cases} \frac{1}{2} \left[1 - \cos\left(\frac{2\pi n}{M}\right) \right] & 0 \le n \le M \\ 0 & \text{else} \end{cases}
$$

Hanning Window (cont.)

Hamming Window

- Medium main lobe \circ
	- Ω 8π/M
- Good side lobes \bigcirc O -41 dB
- Simpler than Blackman \bigcirc

$$
w[n] = \begin{cases} 0.54 - 0.46 \cos\left(\frac{2\pi n}{M}\right) & 0 \le n \le M \\ 0 & \text{else} \end{cases}
$$

Hamming Window (cont.)

Blackman Window

- Large main lobe \circ
	- 12π/M \circ
- Very good side lobes -57 dB
- Complex equation: \bigcirc

$$
w[n] = \begin{cases} 0.42 - 0.5\cos\left(\frac{2\pi n}{M}\right) + 0.08\cos\left(\frac{4\pi n}{M}\right) & 0 \le n \le M \\ 0 & \text{else} \end{cases}
$$

Blackman Window (cont.)

Example # 1

Suppose that we would like to design an FIR linear phase low pass filter according to the following specifications:

 $0.99 \le |H(e^{j\omega})|$ ≤1.01 0 ≤ $|\omega|$ ≤ 0.19 π

$$
|H(e^{j\omega})| \le 0.01 \quad 0.21\pi \le |\omega| \le \pi
$$

- For a stop band attenuation of $20 \log (0.01)$ = -40dB, we may use the Hamming window.
- Because the specification calls for a transition width of: \bigcap

$$
\Delta \omega = \omega_s - \omega_p = 0.02 \pi
$$

or

$$
\Delta f = 0.01
$$

For a hamming window an estimate of the required filter order is: *with* $N\Delta f = 3.3$

Example # 1 (cont.)

$$
N = \frac{3.3}{\Delta f} = 330
$$

Now find the unit sample response of the ideal low pass filter that \bigcirc is to be windowed.

With a cutoff frequency of $\omega_c = (\omega_s + \omega_p)/2 = 0.2\pi$ and a delay of \bigcirc $\alpha = N/2 = 165$

The unit sample response is: \bigcap

$$
h_d(n) = \frac{\sin[0.2\pi(n - 165)]}{(n - 165)\pi}
$$

Kaiser Windows

Kaiser developed a family of windows that are defined by:

$$
w(n) = \frac{I_0 \left[\beta \left(1 - \left[\left(n - \alpha\right)/\alpha\right]^2\right)^{1/2}\right]}{I_0 \beta}, \quad 0 \le n \le M
$$

Where α =N/2 and I₀ is a zeroth-order modified Bessel function \circ of the first kind, which is:

$$
I_0(x) = 1 + \sum_{k=1}^{\infty} \left[\frac{(x/2)^k}{k!} \right]^2
$$

- Where β determines the shape of the window.
- A kaiser window is nearly optimum in the sense of having the \bigcap most energy in its main lobe for a given side-lobe amplitude.

Kaiser Windows (cont.)

Characteristics of the Kaiser Window as a function of β : \bigcirc

Kaiser Windows (cont.)

- There are two empirically derived relationships for the Kaiser window that facilitate the use of these windows to design FIR filters.
- The first relates the stop band ripple of a low-pass filter α_s =-20log(δ_s) to the parameter β : $\beta =$ $0.1102(\alpha_s - 8.7)$ $\alpha_s > 50$ 0.5842(α_s − 21)^{0.4} + 0.07886(α_s − 21) 21 ≤ α_s ≤ 50 $\alpha_s < 21$ ⎧ $\left\{ \right\}$ \perp \vert \lfloor \perp $\mathsf I$
- The second relates N to the transition width Δf and the stop band attenuation α_s ,

$$
N = \frac{\alpha_s - 7.95}{14.36 \Delta f}, \alpha_s \ge 21
$$

Note that if α_s <21 dB a rectangular window may be used.

Example #2

Suppose that we would like to design a low-pass filter with a cutoff \bigcirc frequency $ω = π/4$, a transition width $Δ ω = 0.02 π$ and a stop band ripple δ $_{\rm s}$ =0.01. Because α $_{\rm s}$ =-20 log (0.01)=-40, the Kaiser window parameter is : $\beta = 0.5842(40-21)^{0.4}$ + 0.07886(40 − 21) = 3.4

With $\Delta f = \Delta \omega / 2\pi = 0.01$ we have: Therefore, $N =$ 40 − 7.95 14.36.(0.01) $= 224$ $h(n) = h_d(n)w(n)$ $h_d(n) = \frac{\sin[(n-112)\pi/4]}{(n-112)\pi}$ $(n-112)\pi$

Is the unit sample response of the ideal low-pass filter.