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FIR Filter Design 
!   FIR filters can also be designed from a frequency response 

specification. 

!   The equivalent sampled impulse response which determines the 
coefficients of the FIR filter can then be found by inverse Discrete 
Fourier transformation. 

!   The frequency response of an Nth-order causal FIR filter is: 

!   The design of an FIR filter involves finding the coefficients h(n) 
that result in a frequency response that satisfies a given set of filter 
specifications. 

H ejω( ) = h n( )e− jnω
n=0

N
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FIR Filter Design (cont.) 
!   FIR filter have two important advantages over IIR filters: 

!   They are guaranteed to be stable, even after the filter coefficients have 
been quantized. 

!   They may be easily constrained to have linear phase.  



Basic Design Methods 
!   Windows 

!   Frequency Sampling 

! Equiripple Design 



Filter Design by Windowing 
!   Simplest way of designing FIR filters 

!   Method is all discrete-time no continuous-time involved 

!   Start with ideal frequency response 

!   Choose ideal frequency response as desired response 

!   Most ideal impulse responses are of infinite length 

!   The easiest way to obtain a causal FIR filter from ideal is 

!   More generally 
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Windowing in Frequency Domain 
!   Windowed frequency response: 

!   Thus, the ideal frequency response is smoothed by the discrete time 
Fourier transform of the window, W(ejω). 
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Windowing in Frequency Domain 
(cont.) 

!   There are many different types of windows that may be used in the 
window design method, a few of which are listed below: 

Rectangular 

Hanning or Hann window 

Hamming  

Blackman 
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Windowing in Frequency Domain 
(cont.) 

!   Magnitude of the Fourier transform for an eight point rectangular 
window: 



Windowing in Frequency Domain 
(cont.) 

!   The windowed version is smeared version of desired response. 

!   If w[n]=1 for all n, then W(ejω) is pulse train with 2π period. 



Windowing in Frequency Domain 
(cont.) 

!   There are two methods with which we can determine the desired 
frequency response : 
!   The width of the main lobe of W(ejω). 

!   Ideally the main lobe should be narrow and the side lobe amplitude 
should be small . 

!   However for fixed length window these cannot be minimized 
independently. 

!   General properties of windows are as follows: 
!   As the length N of the window increases, the width of the main lobe 

decreases, which results in a decrease in the transition width between pass 
bands and stop bands. This relationship is given approximately by NΔf=c. 

!   The peak side lobe amplitude of the window is determined by the shape of 
the window and it is essentially independent of the window length. 

!   If the window shape is changed to decrease the side lobe amplitude, the 
width of the main lobe will generally increase. 



Properties of Windows 
!   Prefer windows that concentrate around DC in frequency 

!   Less smearing, closer approximation 

!   Prefer window that has minimal span in time  

!   Less coefficient in designed filter, computationally efficient 

!   So we want concentration in time and in frequency 

!   Contradictory requirements 

!   Example: Rectangular window 
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Rectangular Window 
!   Narrowest main lobe 

!   4π/(M+1) 

!   Sharpest transitions at discontinuities in frequency 

!   Large side lobes 
!   -13 dB 

!   Large oscillation around discontinuities 

!   Simplest window possible: 
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Rectangular Window (cont.) 



Hanning Window 
!   Medium main lobe 

!   8π/M 

!   Side lobes 
!   -31 dB 

!   Hamming window performs better 

!   Same complexity as Hamming 
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Hanning Window (cont.) 



Hamming Window 
!   Medium main lobe 

!   8π/M 

!   Good side lobes 
!   -41 dB 

!   Simpler than Blackman 
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Hamming Window (cont.) 



Blackman Window 
!   Large main lobe  

!   12π/M 

!   Very good side lobes 
!   -57 dB 

!   Complex equation: 
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Blackman Window (cont.) 



Example # 1 
!   Suppose that we would like to design an FIR linear phase low pass 

filter according to the following specifications: 

!   For a stop band attenuation of  20 log (0.01)= -40dB, we may use 
the Hamming window.  

!   Because the specification calls for a transition width of: 

!   For a hamming window an estimate of the required filter order is: 

0.99 ≤ H ejω( ) ≤1.01 0 ≤ ω ≤ 0.19π

H ejω( ) ≤ 0.01 0.21π ≤ ω ≤ π

Δω =ωs −ω p = 0.02π
or
Δf = 0.01

with NΔf = 3.3



Example # 1 (cont.) 

!   Now find the unit sample response of the ideal low pass filter that 
is to be windowed. 

!   With a cutoff frequency of                and a delay of  

!   The unit sample response is: 

N =
3.3
Δf

= 330

ωc = ωs +ω p( ) / 2 = 0.2π

α = N / 2 =165

hd n( ) =
sin 0.2π n−165( )⎡⎣ ⎤⎦

n−165( )π



Kaiser Windows 
!   Kaiser developed a family of windows that are defined by: 

!   Where α=N/2 and I0 is a zeroth-order modified Bessel function 
of the first kind, which is: 

!   Where βdetermines the shape of the window. 

!   A kaiser window is nearly optimum in the sense of having the 
most energy in its main lobe for a given side-lobe amplitude. 
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Kaiser Windows (cont.) 
!   Characteristics of the Kaiser Window as a function of β: 

Parameter β Side Lobe 
(dB) 

Transition 
Width (NΔf) 

Stopband 
Attenuation 

(dB) 

2.0 -19 1.5 -29 

3.0 -24 2.0 -37 

4.0 -30 2.6 -45 

5.0 -37 3.2 -54 

6.0 -44 3.8 -63 

7.0 -51 4.5 -72 

8.0 -59 5.1 -81 

9.0 -67 5.7 -90 

10.0 -74 6.4 -99 



Kaiser Windows (cont.) 
!   There are two empirically derived relationships for the Kaiser 

window that facilitate the use of these windows to design FIR 
filters.  

!   The first relates the stop band ripple of a low-pass filter 
αs=-20log(δs) to the parameter β: 

!   The second relates N to the transition width Δf and the stop band 
attenuation αs ,  

!   Note that if αs<21 dB a rectangular window may be used. 

β =

0.1102 αs −8.7( ) αs > 50

0.5842 αs − 21( )0.4 + 0.07886 αs − 21( ) 21≤αs ≤ 50

0.0 αs < 21
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N =
αs − 7.95
14.36Δf

,αs ≥ 21



Example #2 
!   Suppose that we would like to design a low-pass filter with a cutoff 

frequency ωc=π/4 , a transition width Δω=0.02 π and a stop 
band ripple δs=0.01. Because αs=-20 log (0.01)=-40, the Kaiser 
window parameter is : 

!   With    we have:  

!   Therefore, 

!   Is the unit sample response of the ideal low-pass filter. 

β = 0.5842 40− 21( )0.4 + 0.07886 40− 21( ) = 3.4

Δf = Δω / 2π = 0.01

N =
40− 7.95

14.36. 0.01( )
= 224

h n( ) = hd n( )w n( )

hd n( ) =
sin n−112( )π / 4⎡⎣ ⎤⎦

n−112( )π


