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Incorporation of Generalized Linear 
Phase 

!   Windows are designed with linear phase in mind 

!   Symmetric around M/2 

!   So their Fourier transform are of the form 
 

!   Will keep symmetry properties of the desired impulse response 

!   Assume symmetric desired response 

 

!   With symmetric window 

!   Periodic convolution of real functions 
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Linear Phase Low pass Filter 
!   Desired frequency response 

!   Corresponding impulse response 

!   Desired response is even symmetric, use symmetric window 
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Linear Phase Low pass Filter (cont.) 



Example #1 
!   Kaiser Window Design of a Lowpass Filter: 

!   Specifications 

!   Window design methods assume 

!   Determine cut-off frequency 
!   Due to the symmetry we can choose it to be   

!   Compute  

!   And Kaiser window parameters 

!   Then the impulse response is given as 

ω p = 0.4π,ω p = 0.6π,δ1 = 0.01,δ2 = 0.001
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Example #1 (cont.) 
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General Frequency Selective Filters 
!   A general multiband impulse response can be written as 

!   Window methods can be applied to multiband filters 

!   Example multiband frequency response 
!   Special cases of 

! Bandpass 

! Highpass 

! Bandstop  
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Example #2 
!   We wish to use the Kaiser window method to design a discrete time filter 

with generalized linear phase that meets specifications of the following 
form: 

!   A: Determine the minimum length (M+1) of the impulse response and 
the value of the Kaiser window parameter βfor a filter that meets the 
preceding specifications. 

!   B: What is the delay of the filter? 

!   C: Determine the ideal impulse response hd[n] to which the Kaiser 
window should be applied. 

H ejω( ) ≤ 0.01, 0 ≤ ω ≤ 0.25π

0.95≤ H ejω( ) ≤1.05, 0.35π ≤ ω ≤ 0.6π

H ejω( ) ≤ 0.01, 0.65≤ ω ≤ π



Example #2 Solution 
!   A: We must use the minimum specifications: 

!   B: Since it is a linear phase filter with order 90, it has a delay of 
90/2=45 samples. 

!   C:  

δ = 0.01
Δω = 0.05π
A = −20 log10 δ = −40dB

M +1= A−8
2.285Δω

+1= 90.2→ 91

β = 0.5842 A− 21( )0.4 + 0.07886 A− 21( ) = 3.395

hd n[ ] =
sin 0.625π n− 45( )( )− sin 0.3π n− 45( )( )

π n− 45( )



Example #2 Solution (cont.) 



Optimum Approximations of FIR 
Filters 

!   Filter design by windows is simple but not optimal 
!   Like to design filters with minimal length. 

!   Optimality Criterion 
!   Window design with rectangular filter is optimal in one sense 

!   Minimizes the mean-squared approximation error to desired response 
!   But causes large error around discontinuities 

!   Alternative criteria can give better results 
!   Minimax: minimize maximize error 
!   Frequency-weighted error. 

!   Most popular method: Parks-McClellan Algorithm 
!   Reformulates filter design problem as function approximation 

[ ] [ ]
⎩
⎨
⎧ ≤≤

=
else0

Mn0nh
nh d ε 2 =

1
2π

Hd e jω( )−H ejω( )
2
dω

−π

π

∫



Optimum Approximations of FIR 
Filters 

!   In designing a causal type I linear phase FIR filter, it is convenient 
first to consider the design of zero-phase filter i.e.: one for which: 

!   Insert a delay sufficient to make it causal. The corresponding 
frequency response is given by:  

!   With L=M/2 an integer  

! Ae(ejω) is a real, even and periodic function of ω. 
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Optimum Approximations of FIR 
Filters (cont.) 

!   After delaying the resulting impulse response: 

!   Goal is to approximate a desired response with  

!   Example approximation mask  
!   Low-pass filter 
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Optimum Approximations of FIR 
Filters (cont.) 

!   Above figures shows the tolerance scheme for an approximation to 
a low-pass filter with a real function. 

!   Design algorithms have been developed in which some if the 
parameters L, δ1, δ2, ωp, and ωs are fixed and an iterative 
procedure is used to obtain  optimum adjustments of the 
remaining parameters.  

!   Two distinct approaches have been developed. 

!   Out of which Parks-McClellan algorithm has become the dominant 
method for optimum design of Fir filters. 

!   Thus only this algorithm is  



Parks-McClellan Algorithm 
!   It is based on reformulating the filter design problem as a problem 

in polynomial approximation.  

!   Using Chebyshev polynomials: 

!   Where Tn(x) is an nth-order polynomial.  

!   Express the following as a sum of powers. 

!   Can also be expressed as: 
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Parks-McClellan Algorithm (cont.) 
!   Parks and McClellan showed that with L, ωp, and ωs  fixed and 

convert filter design to an approximation problem. 

!   To formalize the approximation problem in this case, let us define 
an approximation error function: 

!   W(ω) is the weighting function 

! Hd(ejω) is the desired frequency response  

!   Both defined only over the passpand and stopband 

!   Transition bands are unconstrained 
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Low-Pass Filter Approximation 
!   Suppose that we wish to obtain an approximation where L, ωp, 

and ωs are fixed design parameters.  

!   The weighing function W(ω) allows us to weigh the approximation 
errors differently in the different approximation intervals. 

!   For the low-pass filter approximation problem the weighing 
function is: 

!   This choice will force the error to δ= δ2 in both bands. 

!   The particular criterion used in this design procedure is the so-
called minimax or Chebyshev criterion. 
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Low-Pass Filter Approximation 
(cont.) 

!   Where within the frequency intervals of interest we seek a frequency response 
Ae(ejω) that minimizes the maximum weighted approximation error. 

!   The criterion used is : 

!   Where F is the closed subset of 0≤ω≤π such that 0≤ω≤ωp or ωs≤ω≤π. 
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Alternation Theorem 
!   Let Fp denote the closed subset consisting of the disjoint union of 

closed subsets of the real axis x. Then the following is the rth-order 
polynomial. 

! Dp(x) denotes given desired function that is continuous on Fp 

! Wp(x) is a positive function that is continuous on Fp 

!   The weighted error is given as 

!   The maximum error is defined as 

!   A necessary and sufficient condition that P(x) be the unique rth 
order polynomial that minimizes is that Ep(x) exhibit at least (r+2) 
alternations. 
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Alternation Theorem (cont.) 
!   There must be at least (r+2) values xi in Fp such that x1<x2<…<xr+2 

( ) ( ) 2)(r1,2,...,ifor    ExExE 1ipip +==−= + ∓



Example #3 
!   Examine polynomials P(x) that approximate 

!   Fifth order polynomials shown 

!   Which satisfy the theorem? 

1x1.0for       0
1.0x1for        1
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Example #3 (cont.) 



Optimal Type 1 Low-Pass Filters 
!   In this case the P(x) polynomial is the cosine polynomial 

!   The desired low-pass filter frequency response (x=cosω) 

 

!   The weighting function is given as 

 

!   The approximation error is given as  
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Typical Example Low-pass Filter 
Approximation 

!   7th order approximation: 



Properties of Type 1 Low-Pass Filters 
!   The properties are as follows: 

!   The maximum possible number of alterations of the error is (L
+3). 

!   Alterations will always occur at ωp and ωs . 

!   All points with zero slope inside the pass band and all points 
with zero slope inside the stop band will correspond to 
alterations, i.e., the filter will be equiripple except possibly at 
ω=0 and ω=π. 



Flowchart of Parks-McClellan 
Algorithm 



Example # 4 
!   Suppose that we would like to design an equiripple low pass filter 

with a pass band cutoff frequency ωp = 0.3π, a stop band cutoff 
frequency ωs = 0.35π, a pass band ripple of δp = 0.01 and a stop 
band ripple of δs = 0.001. estimating the filter using following 
equation:    

!   Because we want the ripple in the stop band to be 10 times smaller 
than the ripple in the pass band, the error must be weighted using 
the weighting function: 

N =
−10 log δp −δs( )−13

14.6Δf
N =102

W ejω( ) =
1, 0 ≤ ω ≤ 0.3π

10, 0.35π ≤ ω ≤ π
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Example # 4 (cont.) 
!   Using the Parks-McClellan algorithm to design the filter, we obtain 

a filter with the frequency response magnitude. 


