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Difference b/w DTFT & DFT 

!   Recall the DTFT: 

!   The Discrete time Fourier transform is the Fourier transform of a 
discrete time signal. Its output is continuous in frequency and 
periodic.  

!   The Discrete Fourier transform (DFT) is the sampled version of 
DTFT output.  

!   Such a representation is very useful for digital computations and for 
digital hardware implementations. 
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Discrete Fourier Series 

!   Let  be a periodic sequence with a period N: 

!   The Fourier series representation can be written as: 

!   Which is decomposition of  into a sum of N harmonically 
related complex exponentials.  

!   The values of Discrete Fourier series coefficients,  may be 
derived by multiplying both sides of this expansion by   , 
summing over one period and using the fact that the complex 
exponentials are orthogonal:   
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Discrete Fourier Series 

!   The result is: 

!   Note that the DFS coefficients are periodic with a period N: 

!   Hence the DFT pair is: 
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Example #1 

!   Let us find the DFT representation for the sequence: 

!   Note that         is a periodic sequence with a period N=10. 
Therefore, the DFS coefficients are:    

!   Which, for 0 ≤ k ≤ 9, may be simplified to : 
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Example #1 (cont.) 

!   The DFS coefficients for all other values of k may be found from 
the periodicity of          i.e.,  

!   For convenience we sometimes use: 

!   Analysis equation: 

!   Synthesis equation: 
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Properties Of DFS 

!   Linearity: 
!   The DFS pair satisfies the property of linearity. That is: 

!   Shift of a Sequence: 
!   If a periodic sequence        is shifted, the DFS coefficients are 

multiplied by a complex exponential. That is:  
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Properties Of DFS (cont.) 
!   Duality: 

!   It is stated as: 

!   Periodic Convolution: 

!   If  and    are periodic with a period N with DFS coefficients 
 and    , respectively the sequence with DFS coefficients: 

!   Is formed by periodically convolving          with  as follows: 

! Notationally, the periodic convolution of two sequences is written as: 
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Properties Of DFS (cont.) 

!   Periodic Convolution: (cont.) 
!   The only difference between periodic and linear convolution is that, 

with periodic convolution, the sum is only evaluated over a single 
period, whereas with linear convolution the sum is taken over all 
values of k. 



Graphical Periodic Convolution 



Symmetry Properties  



Symmetry Properties (cont.) 



Discrete Fourier Transform 
!   The DFT is an important decomposition for sequences that are finite in length.  

!   Whereas the DTFT is a mapping from a sequence to a function of a continuous 
variable ω, 

!   The DFT is a mapping from a sequence, x(n) to another sequence X(k), 

 

!   The DFT may be easily developed from the Discrete Fourier series representation 
for periodic sequences.  

!   The DFT pair was given as: 
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DFT Properties 

!   Linearity:  
!   If x1(n) and x2(n) have N-point DFTs X1(k) and X2(k) , respectively: 

!   In order to use this property it is important to make sure that the 
DFTs are the same length. 

!   Symmetry: 
!   If x(n) is real valued, X(k) is conjugate symmetric: 

!   If x(n) is imaginary, X(k) is conjugate anti-symmetric: 

ax1 n( )+ bx2 n( )⇔
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X k( ) = X∗ −K( )( ) = X∗ N −K( )( )N
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DFT Properties (cont.) 

!   Circular Shift: 
!   The circular shift of a sequence x(n) is defined as follows: 

!   Where n0 is the amount of shift ad RN(n) is a rectangular window: 

!   A circular shift may be visualized as follows: 
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DFT Properties (cont.) 

!   Circular Shift: (cont.) 



DFT Properties (cont.) 

!   Circular Shift: (cont.) 
!   If a sequence is circularly shifted, the DFT is multiplied by a complex 

exponential: 

!   Similarly with a circular shift of the DFT, X((k-k0))N, the sequence is 
multiplied by a complex exponential: 

 

!   Circular Convolution: 
!   Let h(n) and x(n) be finite-length sequences of length N with N-point 

DFTs H(k) and X(k), respectively. 

!   The sequence that has a DFT equal to the product Y(k)=H(k)X(k) is: 
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DFT Properties (cont.) 

!   Circular Convolution: (cont.) 
!   Where         and          are the periodic extensions of the sequences 

x(n) and h(n), respectively.   

!   Because       for 0≤n<N. The previous equation can also be 
written as: 

!   The sequence y(n) in above equation in the N-point circular 
convolution of h(n) with x(n) and it is written as:    

 y (n)=h(n)     x(n)= x(n)  h(n) 

!   The circular convolution of two finite-length sequences h(n) and x(n) 
is equivalent to one period of the periodic convolution of the periodic 
sequences        and  , (equation scan from book)  
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Example #2 

!   Example of circular convolution of two sequences: 



Linear Convolution Using DFT 
!   The DFT provides a convenient way to perform convolutions without having to 

evaluate the convolution sum. 

!   If h(n) is N1 points long and x(n) is N2 points long, h(n) may be linearly 
convolved with x(n) as follows: 
!   Pad the sequences h(n) and x(n) with zeros so that they are of length N≥N1 + N2 

-1. 
!   Find the N-point DFTs of h(n) and x(n). 
!   Multiply the DFTs to form the product Y(k) = H(k) X(k). 
!   Find the inverse DFT of Y(k). 

!   In spite of its computational advantages there are some difficulties with the DFT 
approach. 

!   For example, if x(n) is very long we must commit a significant amount of time 
computing very long DFTs and in the process accept very long processing delays. 

!   The solution to this problem is to use block convolution, which involves 
segmenting the signal to be filters x(n) into sections. 

 



Linear Convolution Using DFT 
(cont.) 

!   Each section is then filtered with the Fir filter h(n), and the filtered 
sections are pieced together to form the sequence y(n). 

!   There are two block convolution techniques: 
!   Overlap-add 

!   Overlap-save 



Overlap-add 

!   Let x(n) be a sequence that is to be convolved with a causal FIR 
filter h(n) of length L: 

!   Assume that x(n)=0 for n<0 and that the length of x(n) is much 
greater than L. 

!   In this method x(n) is partitioned into non-overlapping 
subsequences of length M as shown below: 

y n( ) = h n( )∗ x n( ) = h k( ) x n− k( )
k=0
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Overlap-add (cont.) 



Overlap-add (cont.) 
!   Thus x(n) may be written as a sum of shifted finite-length sequences 

of length M: 

!   Therefore the linear convolution of x(n) with h(n) is: 

!   Where yi(n) is the linear convolution of xi(n) with h(n):               
yi(n) = xi(n)*h(n)  

!   Each sequence yi(n) is of length N=L+M-1, it may be found by 
multiplying the N-point DFTs of xi(n) and h(n) 
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Overlap-add (cont.) 

!   The reason for the name overlap-add is that for each I, the 
sequences yi(n) and yi+1(n) overlap at (N-M) points and in 
performing the sum these overlapping points are added. 



Overlap-save 
!   This method takes advantage of the fact that the aliasing that occurs in circular 

convolution only affects a portion of the sequences.  

!   For example if x(n) and h(n) are finite length sequences of lengths L and n 
respectively, the linear convolution y(n) is a finite length sequences of lengths N+L-1. 

!   Therefore assuming that N>L, if we perform an N-point circular convolution of x(n) 
with h(n):   

!   Because y(n+N) is the only term that is aliased into the interval 0≤n≤N-1 ,  and 
because y(n+N) only overlaps the first L-1 values of y(n) and the remaining values in 
the circular convolution will not be aliased.  

!   In other words the first L-1 values of the circular convolution are not equal to the 
linear convolution, whereas the last M=N-L+1 values are the same. (shown in the 
figure below) 

!   Thus with the appropriate partitioning of the input sequence x(n), linear convolution 
may be performed by piecing together circular convolutions.  



Overlap-save (cont.) 
!   The procedure is as follows: 

!   Let x1(n) be the sequence: 

!   Perform the N-point circular convolution of x1(n) with h(n) by forming the 
product H(k)X1(k) and then finding the inverse DFT, y1(n). The first L-1 
values of the circular convolution are aliased and the last N-L+1 values 
corresponds to the linear convolution of x(n) with h(n). Due to the zero 
padding at the start of x1(n), these last      N-L+1 values are the first N-L+1 
values of y(n): 

!   Let x2(n) be the N-point sequence that is extracted from x(n) with the first 
L-1 values overlapping with those of x1(n). 

!   Perform N-point circular convolution of x2(n) with h(n)) by forming the 
product H(k)X2(k) and taking the inverse DFT. The first L-1 values of y2(n) 
are discarded and the final N-L+1 values are saved and concatenated with the 
saved values of y1(n):  

x1 n( ) =
0 0 ≤ n < L −1

x n− L +1( ) L −1≤ n ≤ N −1

⎧
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y n( ) = y1 n+ L −1( ), 0 ≤ n ≤ N − L

y n+ N − L +1( ) = y2 n+ L −1( ), 0 ≤ n ≤ N − L



Overlap-save (cont.) 
!   Steps 3 and 4 are repeated until all of the values in the linear 

convolution have been evaluated. 



Example #3 

!   Let us perform the four-point circular convolution of the two 
sequences h(n) and x(n), shown below: 



Example #4 

!   Suppose we have two four-point sequences x[n] and h[n] as follows: 

!   (a): Calculate the four-point DFT X[k]. 

!   (b): Calculate the four-point DFT H[k]. 

!   (c): Calculate                 by doing the circular convolution 
directly. 

!   (d): Calculate y[n] of Part (c) by multiplying the DFTs of x[n] and h[n] 
and performing an inverse DFT.  

x n[ ] = cos πn
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h n[ ] = 2n, n = 0,1, 2,3


