Engineering Economics & Management

Reliability & Total Quality Management

1st Jun 16

Initial Decision Analysis

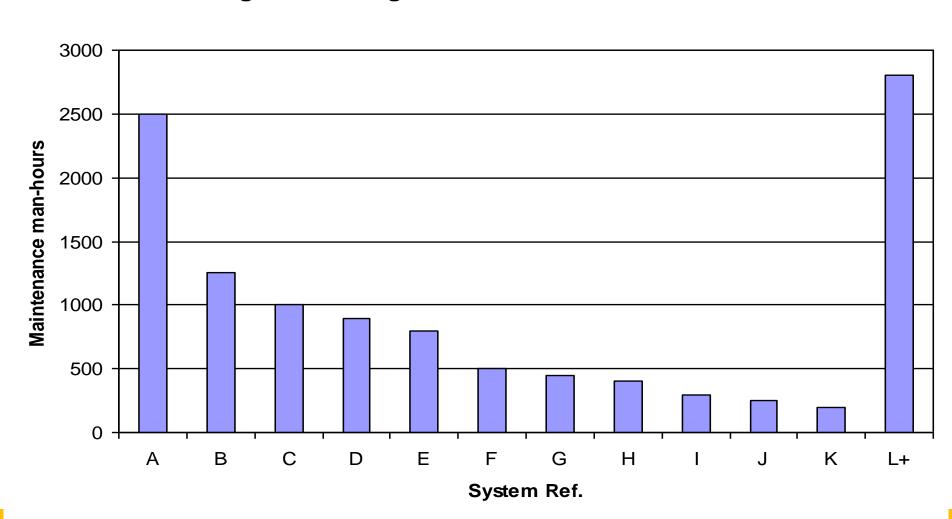
1st Jun 16

Initial Decision Analysis

- Pareto analysis ('Top-ten analysis')- to identify the most significant reliability problem areas.
- Trend analysis to determine whether the problems are getting worse or getting better.

Pareto Analysis

- Pareto's Law of Mal-distribution that can be observed in:
 - Spares cost
 - Manpower needs
 - Outage time
- Two different forms of Pareto plots
 - Histogram
 - Cumulative plot


 Example of an offshore oil and gas extraction system consisting of several identical platforms, each comprising one hundred different sub-systems.

1	2	3	
System	System Ref.	Maintenance-Man-hours	
Lighting	А	2500	
Gas Prod.	В	1250	
Gas Wells	С	1000	
Elec. Gen.	D	900	
H2O Firefight	Е	800	
TEG Regen.	F	500	
Separation	G	450	
Compr Air	Н	400	
Export Pipewk	I	300	
Dehydration	J	250	
Fuel Gas	K	200	
All Other Syst	L+	2800	
	Total 11350		

1	2	3	4	5
System	System Ref.	Maintenance-Man-hours	Percent of Total	Cum. Percent
Lighting	А	2500	22.03	22.03
Gas Prod.	В	1250	11.01	33.04
Gas Wells	С	1000	8.81	41.85
Elec. Gen.	D	900	7.93	49.78
H2O Firefight	E	800	7.05	56.83
TEG Regen.	F	500	4.41	61.23
Separation	G	450	3.96	65.20
Compr Air	н	400	3.52	68.72
Export Pipewk	1	300	2.64	71.37
Dehydration	J	250	2.20	73.57
Fuel Gas	K	200	1.76	75.33
All Other Syst	L+	2800	24.67	100.00
Total		11350	100.00	

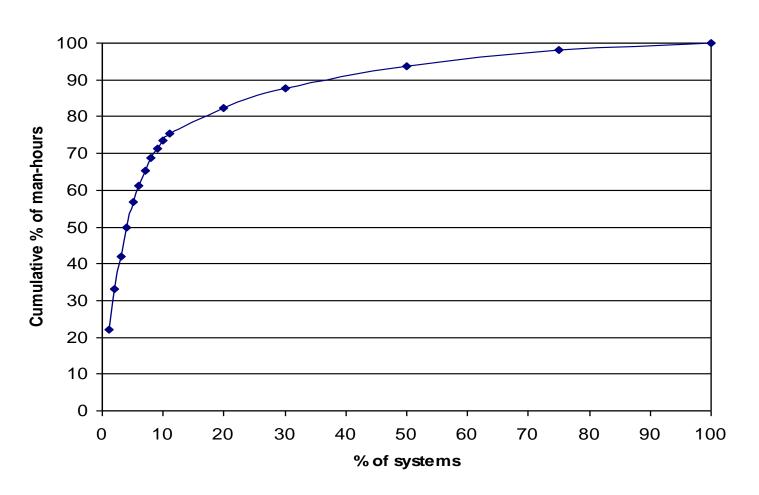

Histogram

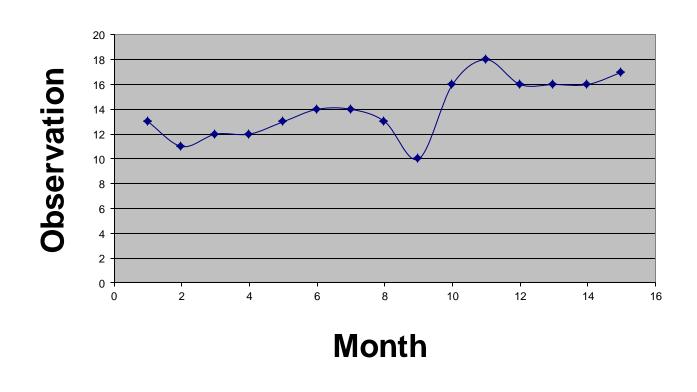
Figure 1. Histogram of ranked manhour data

Cumulative Plot

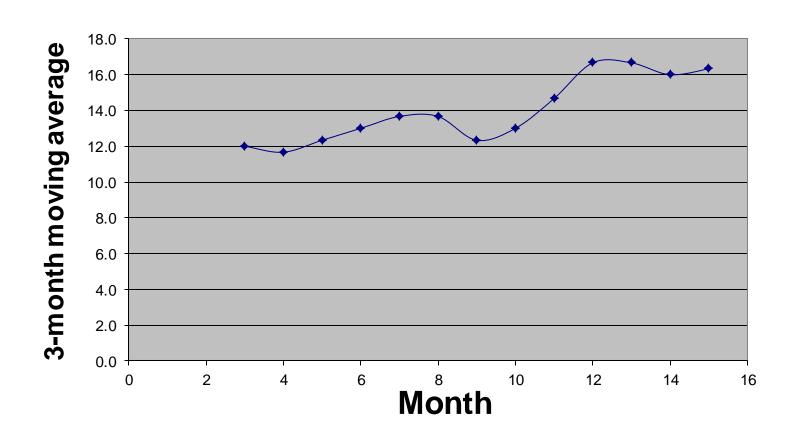
Figure 2. Cumulative plot of percentage man-hours expended

Trend Analysis

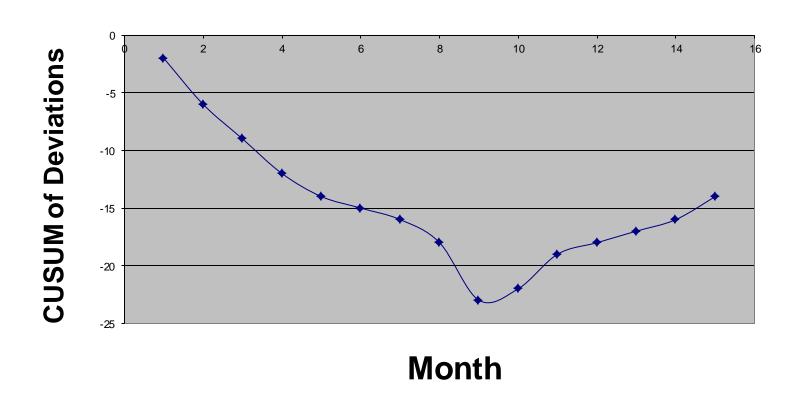
- Conventional plot of monthly data
- Moving average
- CUSUM Cumulative Sum of deviations


 Over a fifteen month period in a processing plant, the total number of failures that occurred was recorded monthly with the results presented in chronological order as follows:

13, 11, 12, 12, 13, 14, 14, 13, 10, 16, 18, 16, 16, 16 and 17.


- Plot the three-monthly moving averages against time.
- Plot the cumulative sum (relative to the monthly target of 15 failures) against time.
- Briefly comment on any trends in the monthly incidence of failures that these two plots may reveal.

Month	Failures	Three-month moving average	Deviation from target T=15	Cumulative sum of deviations
1	13		-2	-2
2	11		-4	-6
3	12	12	-3	-9
4	12	11.7	-3	-12
5	13	12.3	-2	-14
6	14	13	-1	-15
7	14	13.7	-1	-16
8	13	13.7	-2	-18
9	10	12.3	-5	-23
10	16	13	1	-22
11	18	14.7	3	-19
12	16	16.7	1	-18
13	16	16.7	1	-17
14	16	16	1	-16
15	17	16.3	2	-14


Conventional Plot

3 month moving average

Cusum

Thankyou

1st Jun 16