Linear Algebra

System of Linear Equations & Matrices

$14th$ July 16

Course Assessment

14th July 16

Course Assessment

- \triangleright Total Assessment 100%.
	- \triangleright Final Exam : 80%
	- \triangleright Internal Evaluation : 20%
- \triangleright Internal Evaluation 20%
	- \triangleright Quizzes : 10%
		- \triangleright Total Ouizzes 6: Best of 5
	- \triangleright Assignment : 10%
		- \triangleright Total Assignments 6: Best of 5

Introduction

14th July 16

Matrices

- \triangleright Information in science, business and mathematics is often organized into rows and columns to form rectangular arrays called "Matrices"
- \triangleright Tables of numerical data that arise from physical observations
- \triangleright For example: the information required to solve a system of equations such as:

$$
5x + y = 3
$$

2x - y = 4
$$
\begin{bmatrix} 5 & 1 & 3 \ 2 & -1 & 4 \end{bmatrix}
$$

 \triangleright Solution is obtained by preforming appropriate operations on this matrix.

System of Linear Equations

14th July 16

Linear Equations

- \triangleright In a rectangular xy-coordinate system can be represented by an equation of the form: $ax + by = c$
	- \triangleright Where a, b and c are real constants.
- ▶ In n variables: $a_1 x_1 + a_2 x_2 + ... + a_n x_n = b$
	- \triangleright Where a_1, \ldots, a_n and b are real constants.
	- \triangleright x₁, X_n = unknowns.
- \triangleright Example 1:
	- \triangleright The linear equations does not involve any products or roots of variables.
	- \triangleright The following are linear equations:

$$
x + 3y = 7 \qquad y = \frac{1}{2}x + 3z + 1 \qquad x_1 - 2x_2 - 3x_3 + x_4 = 7
$$

 \triangleright The following equations are not linear:

$$
x + \sqrt[3]{y} = 5
$$
 $3x + 2y - z + xz = 4$ $y = \sin x$

- \triangleright The finite set of linear equation is called a system of linear equations or linear system.
- \triangleright The variables are known as unknowns.
- \triangleright Example 2 : Finding a Solution Set:

$$
4x-2y=1
$$

- \triangleright 1 equation and two unknowns. We will set one variable as the parameter.
- A $x = t, y = 2t \frac{1}{2}$ or $x = t, y = 2t - \frac{1}{2}$ or $x = \frac{1}{2}t + \frac{1}{4}, y = t$ 2 1 $x_1 - 4x_2 + 7x_3 = 5$

 \triangleright 1 equation and 3 unknowns. We will set 2 variables as parameter.

$$
x_1 = 5 + 4s - 7t, x_2 = s, x_3 = t
$$

- \triangleright Linear systems in two unknowns arise in connection with intersections of lines.
- \triangleright Linear system is consistent if it has at least one solution and inconsistent if it has no solutions.
- \triangleright Thus a consistent linear system of two equations in two unknowns has either one solution or infinitely many solutions.
- \triangleright The same is true for a linear system of three equations in three unknowns.

Example #1

- \triangleright A linear system with one solution:
- \triangleright Solve the linear system: $x - y = 1$

$$
2x + y = 6
$$

 \triangleright System has the unique solution:

$$
x = \frac{7}{3}, y = \frac{4}{3}
$$

Example #2

- \triangleright A linear system with Infinitely many solutions:
- \triangleright Solve the linear system:

$$
x-y+2z = 5
$$

$$
2x-2y+4z = 10
$$

$$
3x-3y+6z = 15
$$

Linear Systems

 \triangleright (x,y) lies on a line if and only if the numbers x and y satisfy the equation of the line. Solution: points of intersection I1 & I2

 \triangleright 11 and 12 may be parallel: no intersection, no solution

 \triangleright 11 and 12 may intersect at only one point: one solution

Linear Systems

 \triangleright 11 and 12 may coincide: infinite many points of intersection, infinitely many solutions

Augmented Matrices & Elementary Row Operations Canalled Algebra 24th July 16

Augmented Matrices

14th July 16

 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\frac{1}{2}$ ⎤ $\mathsf I$ ⎢ ⎢ ⎢ ⎣ ⎡ *m* 1 a *m* 2 \cdots a *mn* b *m n n* a_{m1} a_{m2} \cdots a_{mn} b a_{21} a_{22} \cdots a_{2n} *b a*₁₁ *a*₁₂ ··· *a*_{1*n*} *b* . . . " " " " 1 $Qm2$ 21 $a_{22} \cdots a_{2n}$ b_2 11 $d_{12} \cdots d_{1n}$ D_1

 \triangleright This is called the augmented matrix for the system.

 \triangleright For example the augmented matrix for the system of equations:

$$
x_1 + x_2 + 2x_3 = 9
$$

\n
$$
2x_1 + 4x_2 - 3x_3 = 1
$$

\n
$$
3x_1 + 6x_2 - 5x_3 = 0
$$

\n
$$
\begin{bmatrix} 1 & 1 & 2 & 9 \\ 2 & 4 & -3 & 1 \\ 3 & 6 & -5 & 0 \end{bmatrix}
$$

 \triangleright When constructing the unknowns must be written in the same order in each equation and the constants must be on the right.

Augmented Matrices

14th July 16

- \triangleright The basic method for solving a liner system is:
	- \triangleright Multiply an equation through by a nonzero constant
	- \triangleright Interchange two equations
	- \triangleright Add a constant times one equation to another
- \triangleright Elementary row operation on a matrix is:
	- \triangleright Multiply a row through by a nonzero constant
	- \triangleright Interchange two rows
	- \triangleright Add a constant times one row to another

Example #3

Example #3 (cont.)

Example #3 (cont.)

 \triangleright Solution:

Linear Algebra: System of Linear Equations & Matrices by Sadaf Shafquat

14th July 16

Gaussian Elimination

14th July 16

Echelon Forms

- \triangleright For a reduced row echelon form a matrix must have the following properties:
	- \triangleright If a row does not consist entirely of zeros, then the first nonzero number in the row is a 1. We call this a leading 1.
	- \triangleright If there are any rows that consist entirely of zeros, then they are grouped together at the bottom of the matrix.
	- \triangleright In any two successive rows that do not consist entirely of zeros, the leading 1 in the lower row occurs farther to the right than the leading 1 in the higher row.
	- \triangleright Each column that contains a leading 1 has zeros everywhere else in that column.
- \triangleright A matrix that has the first three properties is said to be in row echelon form.

Echelon Forms

\triangleright For example:

 \triangleright Reduced row-echelon form:

$$
\begin{bmatrix} 1 & 0 & 0 & 4 \ 0 & 1 & 0 & 7 \ 0 & 0 & 1 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & -2 & 0 & 1 \ 0 & 0 & 0 & 1 & 3 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix}
$$

 \triangleright Row-echelon form:

$$
\begin{bmatrix} 1 & 4 & -3 & 7 \ 0 & 1 & 6 & 2 \ 0 & 0 & 1 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 2 & 6 & 0 \ 0 & 0 & 1 & -1 & 0 \ 0 & 0 & 0 & 0 & 1 \end{bmatrix}
$$

Elimination Methods

- \triangleright Elimination procedure can be used to reduce any matrix to reduced row echelon form. ⎢ ⎡
- \triangleright Step 1: Locate the leftmost nonzero column.
- \triangleright Step 2: Interchange $r_2 \leftrightarrow r_1$
- **►** Step 3: $r_1 = \frac{1}{2} r_1$

$$
5 \text{Step 4: } r_3 = r_3 - 2r_1
$$

$$
\begin{bmatrix}\n0 & 0 & -2 & 0 & 7 & 12 \\
2 & 4 & -10 & 6 & 12 & 28 \\
2 & 4 & -5 & 6 & -5 & -1 \\
2 & 4 & -10 & 6 & 12 & 28 \\
0 & 0 & -2 & 0 & 7 & 12 \\
2 & 4 & -5 & 6 & -5 & -1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n1 & 2 & -5 & 3 & 6 & 14 \\
0 & 0 & -2 & 0 & 7 & 12 \\
2 & 4 & -5 & 6 & -5 & -1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n1 & 2 & -5 & 3 & 6 & 14 \\
0 & 0 & -2 & 0 & 7 & 12 \\
0 & 0 & 5 & 0 & -17 & -29\n\end{bmatrix}
$$

Linear Algebra: System of Linear Equations & Matrices by Sadaf Shafquat

⎣

Elimination Methods (cont.)

 14 th July 16

 \triangleright Step 5 : continue do all steps above until the entire matrix is in rowechelon form.

$$
\triangleright r_{2} = -\frac{1}{2}r_{2}
$$
\n
$$
\triangleright r_{3} = r_{3} - 5r_{2}
$$
\n
$$
\triangleright r_{3} = r_{3} - 5r_{2}
$$
\n
$$
\triangleright r_{4} = 2r_{3}
$$
\n
$$
\triangleright r_{5} = 2r_{3}
$$
\n
$$
\begin{bmatrix}\n1 & 2 & -5 & 3 & 6 & 14 \\
0 & 0 & 5 & 0 & -17 & -29 \\
0 & 0 & 1 & 0 & -\frac{7}{2} & -6 \\
0 & 0 & 0 & 0 & \frac{1}{2} & 1\n\end{bmatrix}
$$
\n
$$
\triangleright r_{1} = 2r_{3}
$$
\n
$$
\begin{bmatrix}\n1 & 2 & -5 & 3 & 6 & 14 \\
0 & 0 & 1 & 0 & -\frac{7}{2} & -6 \\
0 & 0 & 1 & 0 & -\frac{7}{2} & -6 \\
0 & 0 & 0 & 0 & 1 & 2\n\end{bmatrix}
$$

Elimination Methods (cont.)

 14 th July 16

 \triangleright Step 6 : add suitable multiplies of each row to the rows above to introduce zeros above the leading 1's.

$$
\triangleright r_{2} = \frac{7}{2}r_{3} + r_{2}
$$
\n
$$
\begin{bmatrix}\n1 & 2 & -5 & 3 & 6 & 14 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 2\n\end{bmatrix}
$$
\n
$$
\triangleright r_{1} = -6r_{3} + r_{1}
$$
\n
$$
\begin{bmatrix}\n1 & 2 & -5 & 3 & 0 & 2 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 2\n\end{bmatrix}
$$
\n
$$
\triangleright r_{1} = 5r_{2} + r_{1}
$$
\n
$$
\begin{bmatrix}\n1 & 2 & 0 & 3 & 0 & 7 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 2\n\end{bmatrix}
$$

Elimination Methods (cont.)

 14 th July 16[']

- \triangleright 1-5 steps produce a row-echelon form (Gaussian Elimination). Step 6 is producing a reduced row-echelon (Gauss-Jordan Elimination).
- \triangleright Remark: Every matrix has a unique reduced row-echelon form, no matter how the row operations are varied. Row-echelon form of matrix is not unique: different sequences of row operations can produce different row- echelon forms.

Back-Substitution

- \triangleright Bring the augmented matrix into row-echelon form only and then solve the corresponding system of equations by back-substitution.
- \triangleright Example: [Solved by back substitution]

$$
\begin{bmatrix}\n1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0\n\end{bmatrix}
$$
\n
$$
x_1 + 3x_2 - 2x_3 + 2x_4 = 0
$$
\n
$$
x_3 + 2x_4 + 3x_6 = 1
$$
\n
$$
x_6 = \frac{1}{3}
$$

Step 1.
$$
x_1 = -3x_2 + 2x_3 - 2x_5
$$

\n $x_3 = 1 - 2x_4 - 3x_6$
\n $x_6 = \frac{1}{3}$

Back-Substitution (cont.)

14th July 16

- 3 1 $x_6 =$ $x_3 = -2x_4$ $x_1 = -3x_2 - 4x_4 - 2x_5$ Substituting $x_3 = -2x_4$ 3 1 $x_6 =$ $x_3 = -2x_4$ $x_1 = -3x_2 + 2x_3 - 2x_5$ 3 1 Substituting x_6 = Step 2.
	- \triangleright Step 3. Assign arbitrary values to the free variables [parameters], if any
		- \mathcal{L}_{3} 1 $x₆ =$ $x_5 = t$ $x_4 = s$ $x_3 = -2s$ $x_2 = r$ $x_1 = -3r - 4s - 2t$

Homogeneous Linear Systems

14th July 16

Homogeneous Linear Systems **14th July** 16

 \triangleright A system of linear equations is said to be homogeneous if the constant terms are all zero; i.e., the system has the form:

> \mathbb{R}^n : \mathbb{R}^n , \mathbb{R}^n , \mathbb{R}^n , \mathbb{R}^n , \mathbb{R}^n , \mathbb{R}^n $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0$ $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0$

 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = 0$

- \triangleright Every homogeneous system of linear equations is consistent, since all such systems have $x_1=0, x_2=0,...,x_n=0$ as a solution [trivial solution]. Other solutions are called nontrivial solutions.
- \triangleright A homogeneous linear system always has the trivial solution, there are only two possibilities for its solutions:
	- \triangleright The system has only the trivial solution.
	- \triangleright The system has infinitely many solutions in addition to the trivial solution.

Example # 4

 \triangleright Gauss-Jordan Elimination

$$
2x_1 + 2x_2 - x_3 + x_5 = 0
$$

$$
-x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0
$$

$$
x_1 + x_2 - 2x_3 - x_5 = 0
$$

$$
x_3 + x_4 + x_5 = 0
$$

$$
\begin{bmatrix} 2 & 2 & -1 & 0 & 1 & 0 \ -1 & -1 & 2 & -3 & 1 & 0 \ 1 & 1 & -2 & 0 & -1 & 0 \ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

Example # 4 (cont.)

 \triangleright The corresponding system of equations is:

$$
x_1 + x_2 + x_5 = 0
$$

$$
x_3 + x_5 = 0
$$

$$
x_4 = 0
$$

 \triangleright Solving for these variables yields: $x_4 = 0$ $x_3 = -x_5$ $x_1 = -x_2 - x_5$

 \triangleright The general solution is:

$$
x_1 = -s - t, x_2 = s, x_3 = -t, x_4 = 0, x_5 = t
$$

 \triangleright The trivial solution is obtained when s=t=0.

Homogeneous Linear Systems **14th July** 16

\triangleright Theorem:

 \triangleright A homogeneous system of linear equations with more unknowns than equation has infinitely many solutions.

Matrices & Matrix Operations

14th July 16

Matrix Notation & Terminology

14th July 16

- \triangleright A matrix is a rectangular array of numbers with rows and columns.
- \triangleright The numbers in the array are called the entries in the matrix.

$$
\triangleright \text{ Examples:} \quad\n \begin{bmatrix}\n 1 & 2 \\
 3 & 0 \\
 -1 & 4\n \end{bmatrix},\n \begin{bmatrix}\n 2 & 1 & 0 & -3\n \end{bmatrix}\n \begin{bmatrix}\n e & \pi & -\sqrt{2} \\
 0 & \frac{1}{2} & 1 \\
 0 & 0 & 0\n \end{bmatrix},\n \begin{bmatrix}\n 1 \\
 3\n \end{bmatrix},\n \begin{bmatrix}\n 4\n \end{bmatrix}
$$

- \triangleright The size of a matrix is described in terms of the number of rows and columns its contains.
- \triangleright A matrix with only one column is called a column matrix or a column vector.
- \triangleright A matrix with only one row is called a row matrix or a row vector.

$$
\triangleright
$$
 a_{ij} = (A)_{ij} = the entry in row i and column j of a matrix A.

Matrix Notation & Terminology

 14 th July 16

$$
\triangleright \quad \text{1 x n row matrix } a = [a_1 a_2 ... a_n] \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}
$$

 \triangleright m x 1 column matrix \vert $\overline{}$ $\overline{}$ $\overline{}$ ⎦ ⎤ $\mathsf I$ $\mathsf I$ $\mathsf I$ $\mathsf I$ ⎣ ⎡ n_1 u_{n2} u_{nn} *n n* a_{n1} a_{n2} \cdots *a* a_{21} a_{22} \cdots *a* a_{11} a_{12} \cdots *a* ... $\ddot{\cdot}$ " $\ddot{\cdot}$ " $\ddot{\cdot}$ " 1 u_{n2} 21 u_{22} u_2 11 u_{12} u_1

 \triangleright A matrix A with n rows and n columns is called a square matrix of order n. Main diagonal of A = $\{a_{11}, a_{22}, ..., a_{nn}\}$

Operations on Matrices

14th July 16

▷ Definition: **Equality of Matrices**

- \triangleright Two matrices are defined to be equal if they have the same size and their corresponding entries are equal.
- \triangleright If A = [a_{ij}] and B = [b_{ij}] have the same size, then A=B if and only if $(A)_{ii}=(B)_{ii}$, or equivalently $a_{ii}=b_{ii}$ for all i and j.

▷ Definition: Addition & Subtraction

- \triangleright If A and B are matrices of the same size, then the sum A+B is the matrix obtained by adding the entries of B to the corresponding entries of A.
- \triangleright The difference A-B is the matrix obtained by subtracting the entries of B from the corresponding entries of A.
- \triangleright Matrices of different sizes cannot be added or subtracted.
- \triangleright In matrix notation: If A = [a_{ij}] and B = [b_{ij}] have the same size, then $(A+B)_{ii} = (A)_{ii} + (B)_{ii} = a_{ii} + b_{ii}$ and $(A-B)_{ii} = (A)_{ii} - (B)_{ii} = a_{ii} - b_{ii}$

Operations on Matrices

14th July 16

▷ Definition: Scalar Multiples

- \triangleright If A is any matrix and c is any scalar, then the product cA is the matrix obtained by multiplying each entry of the matrix A by c. The matrix cA is said to be a scalar multiple of A.
- \triangleright If A = [a_{ii}], then (cA)_{ij} = c(A)_{ij} = ca_{ij}.
- **▷** Definition: **Multiplication of Matrices**
	- \triangleright If A is an m x r matrix and B is an r x n matrix, then the product AB is the m x n matrix whose entries are determined as follows: To find the entry in row I and column \overline{I} of AB, single out row I from the matrix A and column \overline{I} from the matrix **B**.
	- \triangleright Multiply the corresponding entries from the row and column together and then add up the resulting products.

Matrix Multiplication by Columns & by Rows

14th July 16

 \triangleright Partitioning has many uses, one of which if for finding particular rows or columns of a matrix product AB without computing the entire product.

$$
\triangleright \text{ For example: } AB = A \begin{bmatrix} b_1 & b_2 & \dots & b_n \end{bmatrix} = \begin{bmatrix} Ab_1 & Ab_2 & \dots & Ab_n \end{bmatrix}
$$

(AB computed column by column)

$$
AB = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} B = \begin{bmatrix} a_1B \\ a_2B \\ \vdots \\ a_mB \\ \vdots \\ a_mB \end{bmatrix}
$$

Matrix Products as Linear Combinations

14th July 16

- \triangleright If A₁, A₂,....A_r are matrices of the same size and if c₁, c₂,.... C_r are scalars, then an expression of the form:
- \triangleright Is called a linear combination of A_1 , A_2 , A_r with coefficients c_1 , c_2 ,....., c_r . $c_1A_1 + c_2A_2 + \ldots + c_rA_r$
- \triangleright Let A be an m x n matrix and x an n x 1 column vector say:

$$
A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \text{ and } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}
$$

 \triangleright Thus:

$$
A = \begin{bmatrix} a_{11}x_1 & + & a_{12}x_2 & + \cdots & + & a_{1n}x_n \\ a_{21}x_1 & + & a_{22}x_2 & + \cdots & + & a_{2n}x_n \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1}x_1 & + & a_{m2}x_2 & + \cdots & + & a_{mn}x_n \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}
$$

Matrix Products as Linear Combinations

\triangleright This proves the following theorem:

 \triangleright If A is an m x n matrix and if x is an n x 1 column vector, then the product Ax can be expressed a a linear combination of the column vectors of A in which the coefficients are the entries of x.

 14^{th} *July* 16

Matrix Form of a Linear System

- 14 th July 16
- \triangleright Matrix multiplication has an important applications to systems of linear equations.
- \triangleright Consider a system of m linear equations in n unknowns:

 $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$ $\mathbf{F} = \mathbf{F} \times \mathbf{F}$: $\mathbf{F} = \mathbf{F} \times \mathbf{F}$, $\mathbf{F} = \mathbf{F} \times \mathbf{F}$

 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$

 \triangleright Since two matrices are equal if and only if their corresponding entries are equal, we can replace the m equations in this system by the single matrix equation: $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n$ ⎡ ⎤ \lceil ⎤

$$
\begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}
$$

Matrix Form of a Linear System

 \triangleright The m x 1 matrix on the left side of this equation can be written as a product to give:

- \triangleright If we designate these matrices by A, x and b respectively then we can replace the original system of m equations in n unknowns has been replaced by the single matrix equation. Ax=b.
- \triangleright The matrix A in this equation is called the coefficient matrix of the system.

Matrix Form of a Linear System

 \triangleright The augmented matrix of the system is obtained by adjoining b to A as the last column: thus augmented matrix is:

> $[A|b] =$ a_{11} a_{21} :
: *am*¹ a_{12} a_{22} :
: *am*² … ... … … a_{1n} a_{2n} :
: *amn* \lceil ⎣ $\mathsf I$ $\mathsf I$ $\mathsf I$ $\mathsf I$ $\mathsf I$ ⎤ ⎦ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $b₁$ $b₂$:
: $b_m^{\,}$ ⎡ ⎣ $\mathsf I$ $\mathsf I$ $\mathsf I$ $\mathsf I$ $\mathsf I$ ⎤ ⎦ $\overline{\mathsf{I}}$ $\overline{\mathsf{I}}$ $\overline{\mathsf{I}}$ $\overline{\mathsf{I}}$ $\overline{}$

 \triangleright The vertical bar in [A|b] is a convenient way to separate A from b visually. It has no mathematical significance.

Transpose of a Matrix

- \triangleright If A is any m x n matrix, then the transpose of A denoted by A^T is defined to be the n x m matrix that results by interchanging the row and columns of A; that is the first column of A^T is the first row of A, the second column of A^T is the second row of A and so forth.
- \triangleright Mathematically can be written as: $(A^T)_{ii} = (A)_{ii}$
- \triangleright For example some transposes are:

$$
A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}, B = \begin{bmatrix} 1 & 3 & 5 \end{bmatrix}
$$

$$
AT = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \\ a_{14} & a_{24} & a_{34} \end{bmatrix}, BT = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}
$$

 \blacksquare

- \triangleright If A is a square matrix, then the trace of A, denoted by tr(A) is defined to be the sum of the entries on the main diagonal of A. the trace of A is undefined if A is not a square matrix.
- \triangleright For example:

$$
A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}
$$

$$
tr(A) = a_{11} + a_{22} + a_{33}
$$

Thankyou

14th July 16