Linear Algebra

System of Linear Equations & Matrices

14th July 16

Course Assessment

14th July 16

Course Assessment

- Total Assessment 100%.
 - ➢ Final Exam : 80%
 - Internal Evaluation : 20%
- Internal Evaluation 20%
 - > Quizzes : 10%
 - ➤ Total Quizzes 6: Best of 5
 - Assignment : 10%
 - Total Assignments 6: Best of 5

14th July 16

Introduction

14th July 16

Matrices

- Information in science, business and mathematics is often organized into rows and columns to form rectangular arrays called "Matrices"
- > Tables of numerical data that arise from physical observations
- For example: the information required to solve a system of equations such as:

$$5x + y = 3$$

$$2x - y = 4$$

$$\begin{bmatrix} 5 & 1 & 3 \\ 2 & -1 & 4 \end{bmatrix}$$

Solution is obtained by preforming appropriate operations on this matrix.

System of Linear Equations

14th July 16

Linear Equations

- In a rectangular xy-coordinate system can be represented by an equation of the form: ax + by = c
 - Where a, b and c are real constants.
- > In n variables: $a_1x_1 + a_2x_2 + \dots + a_nx_n = b$
 - > Where a_1, \dots, a_n and b are real constants.
 - \succ x₁,.....x_n = unknowns.
- > Example 1:
 - The linear equations does not involve any products or roots of variables.
 - > The following are linear equations:

$$x + 3y = 7 \qquad y = \frac{1}{2}x + 3z + 1 \qquad x_1 - 2x_2 - 3x_3 + x_4 = 7$$

The following equations are not linear:

$$x + \sqrt[3]{y} = 5$$
 $3x + 2y - z + xz = 4$ $y = \sin x$

- The finite set of linear equation is called a system of linear equations or linear system.
- The variables are known as unknowns.
- > Example 2 : Finding a Solution Set:

$$4x - 2y = 1$$

- 1 equation and two unknowns. We will set one variable as the parameter.
- $x = t, y = 2t \frac{1}{2}$ or $x = \frac{1}{2}t + \frac{1}{4}, y = t$ $x_1 - 4x_2 + 7x_3 = 5$
- ➤ 1 equation and 3 unknowns. We will set 2 variables as parameter.

$$x_1 = 5 + 4s - 7t, x_2 = s, x_3 = t$$

- Linear systems in two unknowns arise in connection with intersections of lines.
- Linear system is consistent if it has at least one solution and inconsistent if it has no solutions.
- Thus a consistent linear system of two equations in two unknowns has either one solution or infinitely many solutions.
- The same is true for a linear system of three equations in three unknowns.

Example #1

- > A linear system with one solution:
- Solve the linear system: x y = 1

$$2x + y = 6$$

System has the unique solution:

$$x = \frac{7}{3}, y = \frac{4}{3}$$

Example #2

- > A linear system with Infinitely many solutions:
- Solve the linear system:

$$x - y + 2z = 5$$

2x - 2y + 4z = 10
3x - 3y + 6z = 15

Linear Systems

(x,y) lies on a line if and only if the numbers x and y satisfy the equation of the line. Solution: points of intersection 11 & 12

➢ I1 and I2 may be parallel: no intersection, no solution

I1 and I2 may intersect at only one point: one solution

Linear Systems

I1 and I2 may coincide: infinite many points of intersection, infinitely many solutions

Augmented Matrices & Elementary Row Operations

Augmented Matrices

14th July 16

 $\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$

This is called the augmented matrix for the system.

> For example the augmented matrix for the system of equations:

$$\begin{array}{c} x_1 + x_2 + 2x_3 = 9 \\ 2x_1 + 4x_2 - 3x_3 = 1 \\ 3x_1 + 6x_2 - 5x_3 = 0 \end{array} \begin{bmatrix} 1 & 1 & 2 & 9 \\ 2 & 4 & -3 & 1 \\ 3 & 6 & -5 & 0 \end{bmatrix}$$

When constructing the unknowns must be written in the same order in each equation and the constants must be on the right.

Augmented Matrices

14th July 16

- > The basic method for solving a liner system is:
 - Multiply an equation through by a nonzero constant
 - Interchange two equations
 - Add a constant times one equation to another
- Elementary row operation on a matrix is:
 - Multiply a row through by a nonzero constant
 - Interchange two rows
 - Add a constant times one row to another

Example #3

Using Elementary Row Operation				
$r_1: x + y + 2z = 9$	[1	1	2	9]
$r_2: 2x + 4y - 3z = 1$	2	4	2 -3 -5	1
$r_3: 3x + 6y - 5z = 0$	3	6	-5	0
$r_2 = -2r_1 + r_2$				
$r_1: x + y + 2z = 9$	[1	1	2	9]
$r_2: 2y - 7z = -17$	0	2	2 -7 -5	-17
$r_3: 3x + 6y - 5z = 0$	3	6	-5	0
$r_3 = -3r_1 + r_3$				
$r_1: x + y + 2z = 9$	[1	1	2 -7 -11	9]
$r_2: 2y - 7z = -17$	0	2	-7	-17
$r_3: 3y - 11z = -27$	0	3	-11	-27

Example #3 (cont.)

[1	1	2	9]
0	1	$-\frac{7}{2}$	$-\frac{17}{2}$
0	3	-11	-27
[1	1	2	9]
0	1	$-\frac{7}{2}$	$-\frac{17}{2}$
0	0	$-\frac{1}{2}$	$-\frac{3}{2}$
[1	1	2	9]
0	1	$-\frac{7}{2}$	$-\frac{17}{2}$
0	0	1	3
	$\begin{bmatrix} 1\\0\\0\end{bmatrix}$	$\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -\frac{7}{2} \\ 0 & 3 & -11 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -\frac{7}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -\frac{7}{2} \\ 0 & 0 & 1 \end{bmatrix}$

Linear Algebra: System of Linear Equations & Matrices

by Sadaf Shafquat

Example #3 (cont.)

Solution:

$r_1: x = 1$	[1	0	0	1]
$r_2: y = 2$	0	1	0	2
$r_3: z = 3$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0	1	3

Linear Algebra: System of Linear Equations & Matrices

by Sadaf Shafquat

Gaussian Elimination

14th July 16

Echelon Forms

- For a reduced row echelon form a matrix must have the following properties:
 - ➢ If a row does not consist entirely of zeros, then the first nonzero number in the row is a 1. We call this a leading 1.
 - If there are any rows that consist entirely of zeros, then they are grouped together at the bottom of the matrix.
 - In any two successive rows that do not consist entirely of zeros, the leading 1 in the lower row occurs farther to the right than the leading 1 in the higher row.
 - Each column that contains a leading 1 has zeros everywhere else in that column.
- A matrix that has the first three properties is said to be in row echelon form.

Echelon Forms

> For example:

Reduced row-echelon form:

Row-echelon form:

$$\begin{bmatrix} 1 & 4 & -3 & 7 \\ 0 & 1 & 6 & 2 \\ 0 & 0 & 1 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 2 & 6 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Elimination Methods

- Elimination procedure can be used to reduce any matrix to reduced row echelon form.
- Step 1: Locate the leftmost nonzero column.
- ➢ Step 2: Interchange r₂ ↔ r₁
- Step 3: r₁ = ½ r₁

Step 4:
$$r_3 = r_3 - 2r_1$$

$$\begin{bmatrix} 0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -10 & 6 & 12 & 28 \\ 2 & 4 & -5 & 6 & -5 & -1 \\ 2 & 4 & -10 & 6 & 12 & 28 \\ 0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -5 & 6 & -5 & -1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -5 & 6 & -5 & -1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -5 & 6 & -5 & -1 \end{bmatrix}$$

Elimination Methods (cont.)

14th July 16

Step 5 : continue do all steps above until the entire matrix is in rowechelon form.

$$r_{2} = -\frac{1}{2} r_{2}$$

$$\begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & 1 & 0 & -\frac{7}{2} & -6 \\ 0 & 0 & 5 & 0 & -17 & -29 \end{bmatrix}$$

$$r_{3} = r_{3} - 5r_{2}$$

$$\begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & 1 & 0 & -\frac{7}{2} & -6 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 1 \end{bmatrix}$$

$$r_{3} = 2r_{3}$$

$$\begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & 1 & 0 & -\frac{7}{2} & -6 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

Linear Algebra: System of Linear Equations & Matrices

by Sadaf Shafquat

Elimination Methods (cont.)

14th July 16

Step 6 : add suitable multiplies of each row to the rows above to introduce zeros above the leading 1's.

$$r_{2} = 7/2 r_{3} + r_{2} \qquad \begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

$$r_{1} = -6r_{3} + r_{1} \qquad \begin{bmatrix} 1 & 2 & -5 & 3 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

$$r_{1} = 5r_{2} + r_{1} \qquad \begin{bmatrix} 1 & 2 & 0 & 3 & 0 & 7 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

Linear Algebra: System of Linear Equations & Matrices

by Sadaf Shafquat

Elimination Methods (cont.)

14th July 16

- 1-5 steps produce a row-echelon form (Gaussian Elimination). Step
 6 is producing a reduced row-echelon (Gauss-Jordan Elimination).
- Remark: Every matrix has a unique reduced row-echelon form, no matter how the row operations are varied. Row-echelon form of matrix is not unique: different sequences of row operations can produce different row- echelon forms.

Back-Substitution

- Bring the augmented matrix into row-echelon form only and then solve the corresponding system of equations by back-substitution.
- Example: [Solved by back substitution]

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} x_1 + 3x_2 - 2x_3 + 2x_5 = 0 \\ x_3 + 2x_4 + 3x_6 = 1 \\ x_6 = \frac{1}{3} \end{array}$$

Step 1.
$$x_1 = -3x_2 + 2x_3 - 2x_5$$

 $x_3 = 1 - 2x_4 - 3x_6$
 $x_6 = \frac{1}{3}$

Linear Algebra: System of Linear Equations & Matrices by 3

by Sadaf Shafquat

Back-Substitution (cont.)

- Step 2. Substituting $x_6 = \frac{1}{3}$ $x_1 = -3x_2 + 2x_3 - 2x_5$ $x_3 = -2x_4$ $x_6 = \frac{1}{3}$ Substituting $x_3 = -2x_4$ $x_1 = -3x_2 - 4x_4 - 2x_5$ $x_3 = -2x_4$ $x_6 = \frac{1}{3}$
 - Step 3. Assign arbitrary values to the free variables [parameters], if any
 - $x_{1} = -3r 4s 2t$ $x_{2} = r$ $x_{3} = -2s$ $x_{4} = s$ $x_{5} = t$ $x_{6} = \frac{1}{3}$

Homogeneous Linear Systems

14th July 16

Homogeneous Linear Systems 14th July 16

A system of linear equations is said to be homogeneous if the constant terms are all zero; i.e., the system has the form:

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$ $\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$

 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$

- Every homogeneous system of linear equations is consistent, since all such systems have x₁=0,x₂=0,...,x_n=0 as a solution [trivial solution]. Other solutions are called nontrivial solutions.
- A homogeneous linear system always has the trivial solution, there are only two possibilities for its solutions:
 - The system has only the trivial solution.
 - > The system has infinitely many solutions in addition to the trivial solution.

Example # 4

Gauss-Jordan Elimination

$$2x_1 + 2x_2 - x_3 + x_5 = 0$$

- $x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0$
 $x_1 + x_2 - 2x_3 - x_5 = 0$
 $x_3 + x_4 + x_5 = 0$

$$\begin{bmatrix} 2 & 2 & -1 & 0 & 1 & 0 \\ -1 & -1 & 2 & -3 & 1 & 0 \\ 1 & 1 & -2 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Example # 4 (cont.)

The corresponding system of equations is:

$$x_{1} + x_{2} + x_{5} = 0$$
$$x_{3} + x_{5} = 0$$
$$x_{4} = 0$$

Solving for these variables yields: $x_1 = -x_2 - x_5$ $x_3 = -x_5$ $x_4 = 0$

The general solution is:

$$x_1 = -s - t, x_2 = s, x_3 = -t, x_4 = 0, x_5 = t$$

The trivial solution is obtained when s=t=0.

Homogeneous Linear Systems 14th July 16

> Theorem:

> A homogeneous system of linear equations with more unknowns than equation has infinitely many solutions.

Matrices & Matrix Operations

14th July 16

Matrix Notation & Terminology

14th July 16

- > A matrix is a rectangular array of numbers with rows and columns.
- > The numbers in the array are called the entries in the matrix.

$$\succ \text{ Examples:} \begin{bmatrix} 1 & 2 \\ 3 & 0 \\ -1 & 4 \end{bmatrix}, \begin{bmatrix} 2 & 1 & 0 & -3 \end{bmatrix}, \begin{bmatrix} e & \pi & -\sqrt{2} \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \end{bmatrix}$$

- The size of a matrix is described in terms of the number of rows and columns its contains.
- A matrix with only one column is called a column matrix or a column vector.
- > A matrix with only one row is called a row matrix or a row vector.

$$\blacktriangleright$$
 $a_{ij} = (A)_{ij} = the entry in row i and column j of a matrix A.$

Matrix Notation & Terminology

14th July 16

 $\blacktriangleright \text{ m x 1 column matrix} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$

A matrix A with n rows and n columns is called a square matrix of order n. Main diagonal of A = $\{a_{11}, a_{22}, ..., a_{nn}\}$

Operations on Matrices

14th July 16

Definition: Equality of Matrices

- Two matrices are defined to be equal if they have the same size and their corresponding entries are equal.
- If A = [a_{ij}] and B = [b_{ij}] have the same size, then A=B if and only if (A)_{ij}=(B)_{ij}, or equivalently a_{ij}=b_{ij} for all i and j.

Definition: Addition & Subtraction

- ➢ If A and B are matrices of the same size, then the sum A+B is the matrix obtained by adding the entries of B to the corresponding entries of A.
- The difference A-B is the matrix obtained by subtracting the entries of B from the corresponding entries of A.
- Matrices of different sizes cannot be added or subtracted.
- ➢ In matrix notation: If A = $[a_{ij}]$ and B = $[b_{ij}]$ have the same size, then
 (A+B)_{ij} = (A)_{ij} + (B)_{ij} = a_{ij} + b_{ij} and $(A-B)_{ij} = (A)_{ij} (B)_{ij} = a_{ij} b_{ij}$

Operations on Matrices

14th July 16

> Definition: Scalar Multiples

- ➢ If A is any matrix and c is any scalar, then the product cA is the matrix obtained by multiplying each entry of the matrix A by c. The matrix cA is said to be a scalar multiple of A.
- \succ If A = [a_{ij}], then (cA)_{ij} = c(A)_{ij} = ca_{ij}.
- Definition: Multiplication of Matrices
 - If A is an m x r matrix and B is an r x n matrix, then the product AB is the m x n matrix whose entries are determined as follows: To find the entry in row I and column j of AB, single out row I from the matrix A and column j from the matrix B.
 - Multiply the corresponding entries from the row and column together and then add up the resulting products.

Matrix Multiplication by Columns & by Rows

14th July 16

Partitioning has many uses, one of which if for finding particular rows or columns of a matrix product AB without computing the entire product.

For example:
$$AB = A \begin{bmatrix} b_1 & b_2 & \dots & b_n \end{bmatrix} = \begin{bmatrix} Ab_1 & Ab_2 & \dots & Ab_n \end{bmatrix}$$

(AB computed column by column)

$$AB = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} B = \begin{bmatrix} a_1B \\ a_2B \\ \vdots \\ a_mB \end{bmatrix}$$

$$(AB \ computed \ row \ by \ row)$$

Matrix Products as Linear Combinations

14th July 16

- → If A_1 , A_2 ,..., A_r are matrices of the same size and if c_1 , c_2 ,..., C_r are scalars, then an expression of the form:
- $c_1A_1 + c_2A_2 + \dots + c_rA_r$ > Is called a linear combination of $A_1, A_2, \dots A_r$ with coefficients c_1, c_2, \dots, c_r .
- Let A be an m x n matrix and x an n x 1 column vector say:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \text{ and } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Thus:

$$A = \begin{bmatrix} a_{11}x_1 & + & a_{12}x_2 & + \cdots & + & a_{1n}x_n \\ a_{21}x_1 & + & a_{22}x_2 & + \cdots & + & a_{2n}x_n \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1}x_1 & + & a_{m2}x_2 & + \cdots & + & a_{mn}x_n \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

Matrix Products as Linear Combinations

- > This proves the following theorem:
 - If A is an m x n matrix and if x is an n x 1 column vector, then the product Ax can be expressed a a linear combination of the column vectors of A in which the coefficients are the entries of x.

14th July 16

Matrix Form of a Linear System

- Matrix multiplication has an important applications to systems of linear equations.
- Consider a system of m linear equations in n unknowns:

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$ $\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$

 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$

Since two matrices are equal if and only if their corresponding entries are equal, we can replace the m equations in this system by the single matrix equation: $\begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \end{bmatrix} \begin{bmatrix} b_n \end{bmatrix}$

$$\begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Matrix Form of a Linear System

The m x 1 matrix on the left side of this equation can be written as a product to give:

- If we designate these matrices by A, x and b respectively then we can replace the original system of m equations in n unknowns has been replaced by the single matrix equation. Ax=b.
- The matrix A in this equation is called the coefficient matrix of the system.

Matrix Form of a Linear System

The augmented matrix of the system is obtained by adjoining b to A as the last column: thus augmented matrix is:

 $\begin{bmatrix} A | b \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$

The vertical bar in [A|b] is a convenient way to separate A from b visually. It has no mathematical significance.

Transpose of a Matrix

- If A is any m x n matrix, then the transpose of A denoted by A^T is defined to be the n x m matrix that results by interchanging the row and columns of A; that is the first column of A^T is the first row of A, the second column of A^T is the second row of A and so forth.
- > Mathematically can be written as: $(A^T)_{ij} = (A)_{ji}$
- For example some transposes are:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}, B = \begin{bmatrix} 1 & 3 & 5 \end{bmatrix}$$
$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \\ a_{14} & a_{24} & a_{34} \end{bmatrix}, B^{T} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$$

ы

- If A is a square matrix, then the trace of A, denoted by tr(A) is defined to be the sum of the entries on the main diagonal of A. the trace of A is undefined if A is not a square matrix.
- > For example:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
$$tr(A) = a_{11} + a_{22} + a_{33}$$

Thankyou

14th July 16