Linear Algebra

Euclidean Vector Spaces

2nd Aug 16

Linear Algebra: Euclidean Vector Spaces

Vectors in 2-Space, 3-Space & n-Space

2nd Aug 16

Linear Algebra: Euclidean Vector Spaces

Introduction

- There are two type of physical quantities:
 - Scalars
 - > Vectors
- Scalars: are quantities that can be described by a numerical value alone.
- Vectors: are quantities that require both a number and a direction for their complete physical description.

Geometric Vectors

- Vectors are represented in two dimensions (also called 2-space) or in three dimension (also called 3-space) by arrows.
- The direction of the arrowhead specifies the direction of the vector and the length of the arrow specifies the magnitude.
- > Mathematicians call these geometric vectors.
- The tail of the arrow is called the initial point of the vector and the tip the terminal point.

Linear Algebra: Euclidean Vector Spaces

Geometric Vectors (cont.)

- Vectors will be represented in bold letters and scalars will be in italic type.
- A vector **v** has the initial point A and terminal point B as shown below: $\mathbf{v} = \overrightarrow{AB}$

Linear Algebra: Euclidean Vector Spaces

Geometric Vectors (cont.)

- Vectors with same length and direction are said to be equivalent.
- Vector is determined solely by its length and direction, hence equivalent vectors are regarded to be the same vector even though they may be in different positions.
- Equivalent vectors are regarded to be the same vector even though they may be in different positions.
- The vector whose initial and terminal points coincide has length zero, so its known as zero vector and denote it by 0.
- The zero vector has no natural direction, so we will agree that it can be assigned any direction that is convenient for the problem at hand.

Vector Addition

Parallelogram Rule for Vector Addition:

- If v and w are vectors in 2-space or 3-space that are positioned so their initial points coincide, then the two vectors form adjacent sides of a parallelogram.
- The sum v+w is the vector represented by the arrow from the common initial point of v and w to the opposite vertex of the parallelogram.

Linear Algebra: Euclidean Vector Spaces

Vector Addition (cont.)

Triangle Rule for Vector Addition:

- If v and w are vectors in 2-space or 3-space that are positioned so the initial point of w is at the terminal point of v, then the sum v+w is represented by the arrow from the initial point of v to the terminal point of w (shown in figure b)
- The sum v+w and w+v by the triangle rule is shown in figure c. This construction make it evident that: v+w = w+v

Linear Algebra: Euclidean Vector Spaces

by Sadaf Shafquat

2nd Aug 16

Vector Addition (cont.)

2nd Aug 16

Triangle Rule for Vector Addition: (cont.)

The sum obtained by the triangle rule is the same as the sum obtained by the parallelogram rule.

Vector Subtraction

- \succ The negative of a vector **v**, denoted by **-v** is the vector that has the
 - same length as **v** but is oppositely directed. (shown in fig: a)
- The difference of v from w, denoted by w-v is taken to be the sum: w-v = w + (-v).
- ➤ The difference of v and w can be obtained geometrically by the parallelogram method shown in figure b.
- Or more directly by positioning w and v so their initial points coincide and drawing the vector from the terminal point of v to the terminal point of w (shown in fig: c).

by Sadaf Shafquat

Scalar Multiplication

- If v is a nonzero vector in 2-space or 3-space and if k is a nonzero scalar, then we define the scalar product of v by k to be the vector whose length is |k| times the length of v and whose direction is the same as that of v if k is positive and opposite to that of v if k is negative.
- > If k=0 or v=0, then we define kv to be 0.
- The figure below shows the relationship between a vector v and some of its scalar multiple.

Linear Algebra: Euclidean Vector Spaces

Parallel & Collinear Vectors

- Suppose that v and w are vectors in 2-space or 3-space with a common initial point.
- If one of the vectors is a scalar multiple of the other, then the vectors lie on a common line, so it is reasonable to say that they are collinear. (as shown below)

Parallel & Collinear Vectors (cont.)

However, if we translate one of the vectors as indicated in fig b, then the vectors are parallel but no longer collinear.

Although the vector **0** has no clearly defined direction, we will regard it to be parallel to all vectors when convenient.

Sum of Three or More Vectors

- 2nd Aug 16
- Vector addition satisfies the associative law for addition, meaning that when we add three vectors, say u, v, and w it does not matter which two we add first; i.e., u + (v + w) = (u + v) + w.
- A simple way to construct u + v + w is to place the vectors "tip to tail" in succession and then draw the vector from the initial point of u to the terminal point of w.

Vectors in Coordinate Systems

If a vector v in 2-space or 3-space is positioned with its initial point at the origin of a rectangular coordinate system, then the vector is completely determined by the coordinates of its terminal point. As shown below:

These coordinates are known as the components of v relative to the coordinate system.

2nd Aug 16

Vectors in Coordinate Systems (cont.)

- ➤ We will write $\mathbf{v} = (v_1, v_2)$ to denote a vector \mathbf{v} in 2-space with components (v_1, v_2) and $\mathbf{v} = (v_1, v_2, v_3)$ to denote a vector \mathbf{v} in 3-space with components (v_1, v_2, v_3) .
- The two vectors in 2-space or 3-space are equivalent if and only if they have the same terminal point when their initial points are at the origin.
- Algebraically, this means that two vectors are equivalent if and only if their corresponding components are equal.
- For example: $\mathbf{v} = (v_1, v_2, v_3)$ and $\mathbf{w} = (w_1, w_2, w_3)$ in 3-space are equivalent if and only if: $v_1 = w_1, v_2 = w_2, v_3 = w_3$.

Vectors whose Initial Point is Not at the Origin

- > If P₁P₂ denotes the vector with initial point P₁ (x₁, y₁) and terminal point P₂ (x₂, y₂), then the components of this vector are given by the formula: P₁P₂ = (x₂ x₁, y₂ y₁).
 > The vector P₁P₂ is the difference of vectors OP₁ and OP₂, so:
 - $\overline{P_1P_2} = OP_1^2 OP_2 = (x_2, y_2) (x_1, y_1) = (x_2 x_1, y_2 y_1)$

Linear Algebra: Euclidean Vector Spaces

Example #1

Finding the components of a vector:

> The components of the vector $\mathbf{v} = P_1 P_2$ with initial point P_1 (2, -1, 4) and the terminal point P_2 (7, 5, -8) are:

$$v = (7-2, 5-(-1)), (-8-4) = (5, 6, -12)$$

Linear Algebra: Euclidean Vector Spaces

n-Space

Definition: If n is an positive integer, then an ordered n-tuple is a sequence of n real numbers (v₁, v₂, ..., v_n). The set of all ordered n-tuples is called n-space and is denoted by Rⁿ.

Operations on Vectors in Rⁿ

2nd Aug 16

- > Definition: Vectors $\mathbf{v} = (v_1, v_2, ..., v_n)$ and $\mathbf{w} = (w_1, w_2, ..., w_n)$ in \mathbb{R}^n are said to be equivalent if: $v_1 = w_1$, $v_2 = w_2$, $v_n = w_n$
- > For example: Equality of vectors:

$$(a,b,c,d) = (1,-4,2,7)$$

If and only if $a = 1$, $b = -4$, $c = 2$ and $d = 7$

Properties of Vector Operations

- 2nd Aug 16
- Theorem: If u, v and w are vectors in Rⁿ and if k and m are scalars, then:
 - ➤ (a): u + v = v + u
 - > (b): (u + v) + w = u + (v + w)
 - ➤ (c): u + 0 = 0 + u = u
 - ➤ (d): u + (-u) = 0
 - ➤ (e): k (u + v) = ku + kv
 - ➤ (f): (k + m) u = ku + mu
 - ➤ (g): k(mu) = (km) u
 - ➤ (h): 1u = u
- > Theorem: If **v** is a vector in \mathbb{R}^n and k is a scalar, then:
 - ➤ (a): 0v = 0
 - ➤ (b): k0 = 0
 - ➤ (c): (-1)v = -v

Linear Combinations

- > Definition: If **w** is a vector in Rⁿ, then **w** is said to be a linear combination of the vectors \mathbf{v}_1 , \mathbf{v}_2 ,..., \mathbf{v}_r in Rⁿ if it can be expressed in the form: $\mathbf{w} = k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + ... + k_r\mathbf{v}_r$.
- > Where k_1 , k_2 ,..., k_r are scalars. These scalars are called the coefficients of the linear combination.
- For example : If in case r=1, formula becomes w= k₁v₁, so that a linear combination of a single vector is just a scalar multiple of that vector.

Alternative Notations for Vectors 2nd Aug 16

- A vector in Rⁿ is just a list of its n components in a specific order any notation that displays those components in the correct order is a valid way of representing the vector.
- For example a vector in $\mathbf{v} = [v_1 \ v_2 \ ... \ V_n]$ is called a row matrix form and in column matrix form it can be written as:

$$\mathcal{V} = \begin{bmatrix} \nu_1 \\ \nu_2 \\ \vdots \\ \nu_n \end{bmatrix}$$

Linear Algebra: Euclidean Vector Spaces

Norm, Dot Product, and Distance in Rⁿ

2nd Aug 16

Linear Algebra: Euclidean Vector Spaces

Norm of a Vector

Definition: If v = (v₁, v₂, ..., v_n) is a vector in Rⁿ, then the norm of v (also called the length of v or the magnitude of v) is denoted by ||v|| and is defined by the formula:

$$\|\nu\| = \sqrt{\nu_1^2 + \nu_2^2 + \nu_3^2 + \dots + \nu_n^2}$$

Example #2

> Calculating Norms: vector $\mathbf{v} = (-3, 2, 1)$ in \mathbb{R}^3 is:

$$\left\|\nu\right\| = \sqrt{\left(-3\right)^2 + 2^2 + 1^2} = \sqrt{14}$$

> Norm of the vector $\mathbf{v} = (2, -1, 3, -5)$ in R⁴ is:

$$\|\nu\| = \sqrt{2^2 + (-1)^2 + 3^2 + (-5)^2} = \sqrt{39}$$

Linear Algebra: Euclidean Vector Spaces

by Sadaf Shafquat

2nd Aug 16

Theorem

> If **v** is a vector \mathbb{R}^n , and if k is any scalar, then:

- \succ $||v|| \ge 0$
- \blacktriangleright ||v|| = 0 if and only if v =0
- \rightarrow ||kv|| = |k| ||v||

Unit Vectors

- > A vector of norm 1 is called a unit vector.
- → If **v** is any nonzero vector in Rⁿ, then: $\mathcal{U} = \frac{1}{\|\mathcal{V}\|} \mathcal{V}$ vector that is in the same directions as **v**.

defines a unit

The process of multiplying a nonzero vector by the reciprocal of its length to obtain a unit vector is called normalizing v.

Example #3

2nd Aug 16

- > Find the unit vector **u** that has the same direction as \mathbf{v} = (2,2,-1).
- > Solution:
 - The vector v has length:

$$\|\nu\| = \sqrt{2^2 + 2^2 + (-1)^2} = 3$$

Thus,

$$u = \frac{1}{3} (2, 2, -1) = \left(\frac{2}{3}, \frac{2}{3}, -\frac{1}{3}\right)$$

Linear Algebra: Euclidean Vector Spaces

The Standard Unit Vectors

- When a rectangular coordinate system is introduced in R² or R³, the unit vectors in the positive directions of the coordinate axes are called the standard unit vectors.
- The standard unit vectors in Rⁿ to be: $e_1 = (1,0,0,...,0)$, $e_2 = (0,1,0,...,0)$, $e_1 = (0,0,0,...,1)$ in which case every vector $\mathbf{v} = (v_1, v_2,..., v_n)$ in Rⁿ can be expressed as:

$$v = (v_1, v_2, \dots, v_n) = v_1 e_1 + v_2 e_2 + \dots + v_n e_n$$

Linear Algebra: Euclidean Vector Spaces

Distance in Rⁿ

2nd Aug 16

➢ If u = (u₁, u₂,...,u_n) and v = (v₁, v₂,...,v_n) are points in Rⁿ, then we denote the distance between u and v by d (u, v) and define it to be:

$$d(u,v) = ||u-v|| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$$

Linear Algebra: Euclidean Vector Spaces

Example #4

2nd Aug 16

 \succ Calculating Distance in \mathbb{R}^n .

Then the distance between u and v is:

$$d(u,v) = ||u-v|| = \sqrt{(1-0)^2 + (3-7)^2 + (-2-2)^2 + (7-2)^2}$$
$$= \sqrt{58}$$

Dot Product

If u and v are nonzero vectors in R² or R³ and if θ is the angle between u and v, then the dot product also known as Euclidean inner product of u and v is denoted by u.v and is defined as:

$$u \cdot v = \|u\| \|v\| \cos \theta$$

> If $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$, then we define $\mathbf{u} \cdot \mathbf{v}$ to be 0.

Linear Algebra: Euclidean Vector Spaces

Dot Product (cont.)

> Above formula of dot product can also be written as:

- Since $0 \le \theta \le \pi$, it follows from above formula and properties of the cosine function that:
 - \triangleright θ is acute if u . v > 0
 - \succ θ is obtuse if u . v < 0
 - > $\theta = \pi/2$ if u . v =0

Example #5

- > Find the angle between a diagonal of a cube and one of its edges.
- Solution:
 - Let k be the length of an edge and introduce a coordinate system as shown below.

▶ If we let $\mathbf{u}_1 = (k,0,0)$, $\mathbf{u}_2 = (0,k,0)$ and $\mathbf{u}_3 = (0,0,k)$, then the vector: $\mathbf{d} = (k,k,k) = \mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_3$ is a diagonal of the cube.

> Then:
$$\cos\theta = \frac{u_1 \cdot d}{\|u_1\| \|d\|} = \frac{k^2}{(k)(\sqrt{3k^2})} = \frac{1}{\sqrt{3}}$$

Linear Algebra: Euclidean Vector Spaces

Example #5 (cont.)

➤ With the help of a calculator we obtain:

$$\theta = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right) \approx 54.74^{\circ}$$

Linear Algebra: Euclidean Vector Spaces

Component Form of the Dot Product

➢ If u = (u₁, u₂,...,u_n) and v = (v₁, v₂,...,v_n) are vectors in Rⁿ, then the dot product of u and v is denoted by u . v and is defined by:
u . v = u₁v₁+u₂v₂+....+u_nv_n

Algebraic Properties of the Dot Product

- > Theorem: If **u**, **v** and **w** are vectors in \mathbb{R}^n and if k is a scalar, then:
 - (a): u . v = v . u [Symmetry Property]
 - (b): u . (v + w) = u . v + u . w [Distributive property]
 - \succ (c): k (**u** · **v**) = (k**u**) · **v** [Homogeneity property]
 - (d): $\mathbf{v} \cdot \mathbf{v} \ge 0$ and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = 0$ [Positivity property]

Dot Product as Matrix Multiplication

> If A is an n x n matrix and **u** and **v** are n x 1 matrices, then it follows that:

$$Au \cdot v = v^{T} (Au) = (v^{T}A)u = (A^{T}v)^{T} u = u \cdot A^{T}v$$
$$u \cdot Av = (Av)^{T} u = (v^{T}A^{T})u = v^{T} (A^{T}u) = A^{T}u \cdot v$$

The resulting formulas:

 $Au \cdot v = u \cdot A^T v$ $u \cdot Av = A^T u \cdot v$

Linear Algebra: Euclidean Vector Spaces

Dot Product as Matrix Multiplication 2rd Aug 16

Table 1

Form	Dot Product		Example
u a column matrix and v a column matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u}$	$\mathbf{u} = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$	$\mathbf{u}^T \mathbf{v} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7$
		$\mathbf{v} = \begin{bmatrix} 5\\4\\0 \end{bmatrix}$	$\mathbf{v}^T \mathbf{u} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$
u a row matrix and v a column matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}\mathbf{v} = \mathbf{v}^T \mathbf{u}^T$	$\mathbf{u} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$	$\mathbf{uv} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7$
		[0]	$\mathbf{v}^T \mathbf{u}^T = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$

Linear Algebra: Euclidean Vector Spaces

Dot Product as Matrix Multiplication 2rd Aug 16

u a column matrix and v a row matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{v}\mathbf{u} = \mathbf{u}^T \mathbf{v}^T$	$\mathbf{u} = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix}$	$\mathbf{vu} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$ $\mathbf{u}^T \mathbf{v}^T = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7$

Form	Dot Product		Example
u a row matrix and v a row matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \mathbf{v}^T = \mathbf{v} \mathbf{u}^T$	$\mathbf{u} = [1 -3 5]$ $\mathbf{v} = [5 4 0]$	$\mathbf{uv}^{T} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \end{bmatrix} = -7$
		. []]	$\mathbf{v}\mathbf{u}^{T} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \end{bmatrix} = -7$
			5

Linear Algebra: Euclidean Vector Spaces

Thankyou

2nd Aug 16

Linear Algebra: Euclidean Vector Spaces