Linear Algebra

Eigenvalues & Eigenvectors

$23rd$ Aug 16

Eigenvalue & Eigenvector

23rd Aug 16

Definition

- \triangleright If A is an n x n matrix, then a nonzero vector **x** in Rⁿ is called an eigenvector of A (or of the matrix operator T_A) is Ax is a scalar multiple of **x**; that is: $Ax = \lambda x$ for some scalar λ .
- \triangleright The scalar λ is called an eigenvalue of A (or of T_Δ), and **x** is said to be an eigenvector corresponding to λ .
- \triangleright The requirement that an eigenvector be nonzero is imposed to avoid the unimportant case $AO = \lambda O$, which holds for every A and λ .

 \triangleright Eigenvector of a 2 x 2 matrix: \triangleright The vector $\left| \begin{array}{c} 1 \\ x \end{array} \right| = \left| \begin{array}{c} 1 \\ 2 \end{array} \right|$ is an eigenvector of: 2 $\mathsf I$ ⎣ $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ ⎦ $\overline{}$ $A = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}$ 8 −1 \lceil $\left[\begin{array}{cc} 3 & 0 \\ 0 & 1 \end{array}\right]$ $\overline{}$

 \triangleright Corresponding to the eigenvalue λ =3, since

$$
Ax = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3x
$$

 \int

 \triangleright Geometrically, multiplication by A has stretched the vector x by a factor of 3.

⎣

Computing Eigenvalues & Eigenvectors *23rd Aug 16*

 \triangleright Theorem: If A is n x n matrix, then λ is an eigenvalue of A if and only if it satisfies the equation:

$$
\det(\lambda I - A) = 0
$$

 \triangleright This is called the characteristic equation of A.

 \triangleright In Example 1 we observed that λ =3 is an eigenvalue of the matrix:

$$
A = \left[\begin{array}{cc} 3 & 0 \\ 8 & -1 \end{array} \right]
$$

- \triangleright But we did not explain how we found it. Use the characteristic equation to find all eigenvalues of this matrix.
- \triangleright Solution:
- \triangleright It follows from formula 1 that the eigenvalues of A are the solutions of the equation det $(\lambda I - A) = 0$, which can be written as:

$$
\begin{vmatrix} \lambda - 3 & 0 \\ -8 & \lambda + 1 \end{vmatrix} = 0
$$

 \triangleright From which we obtain: $(λ-3)(λ+1)=0$

Example #2 (cont.)

 \triangleright This shows that the eigenvalues of A are λ =3 and λ = -1. Thus, in addition to the eigenvalue $\lambda=3$ noted in example 1, we have discovered a second eigenvalue λ = -1.

Characteristic Polynomial

- \triangleright When the determinant det ($\lambda I A$) that appears on the left side of 1 is expanded, the result is a polynomial $p(\lambda)$ of degree n that is called the characteristic polynomial of A.
- \triangleright In general, the characteristic polynomial of an n x n matrix has the form:

$$
p(\lambda) = \lambda^n + c_1 \lambda^{n-1} + \dots + c_n
$$

 \triangleright In which the coefficient of λ^n is 1. Since polynomial of degree n has at most n distinct roots, it follows that the equation:

$$
\lambda^n + c_1 \lambda^{n-1} + \dots + c_n = 0
$$

- \triangleright Has at most n distinct solutions and consequently that an n x n matrix has at most n distinct eigenvalues.
- \triangleright It is possible for a matrix to have complex eigenvalues, even if that matrix itself has real entries.

 \triangleright Find the eigenvalues of $A =$ 0 1 0 0 0 1 4 −17 8 \int ⎣ \parallel \parallel \parallel ⎤ ⎦ ⎥ ⎥ ⎥

- \triangleright Solution:
- \triangleright The characteristic polynomial of A is:

$$
\det(\lambda I - A) = \det \begin{bmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -4 & 17 & \lambda - 8 \end{bmatrix} = \lambda^3 - 8\lambda^2 + 17\lambda - 4
$$

 \triangleright The eigenvalues of A must therefore satisfy the cubic equation: $\lambda^3 - 8\lambda^2 + 17\lambda - 4 = 0$

 \triangleright The only possible integer solutions of 4 are the divisors of -4, that is, ± 1 , ± 2 , ± 4 .

Example #3 (cont.)

- \triangleright Substituting these values shows that λ = 4 is an integer solution.
- As a consequence, $\lambda 4$ must be a factor of the left side of 4.
- \triangleright Dividing λ 4 into λ³- 8 λ² + 17λ 4 shows that 4 can be rewritten as: $(\lambda - 4)(\lambda^2 - 4\lambda + 1) = 0$
- \triangleright Thus, the remaining solutions of 4 satisfy the quadratic equation:

$$
\lambda^2 - 4\lambda + 1 = 0
$$

 \triangleright Which can be solved by the quadratic formula. Thus the eigenvalues of A are:

$$
\lambda = 4
$$
, $\lambda = 2 + \sqrt{3}$, and $\lambda = 2 - \sqrt{3}$

Theorem

- \triangleright If A is an n x n triangular matrix (upper triangular, lower triangular or diagonal), then the eigenvalues of A are the entries on the main diagonal of A.
- \triangleright For example: By inspection, the eigenvalues of the lower triangular matrix:

$$
A = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & \frac{2}{3} & 0 \\ 5 & -8 & -\frac{1}{4} \end{bmatrix}
$$

are $\lambda = \frac{1}{2}$, $\lambda = \frac{2}{3}$ and $\lambda = -\frac{1}{4}$

Theorem (cont.)

 \triangleright If A is an n x n matrix, the following statements are equivalent:

- \triangleright λ is an eigenvalue of A.
- \triangleright The system of equations ($\lambda I A$) **x** = 0 has nontrivial solutions.
- \triangleright There is a nonzero vector **x** such that $Ax = \lambda x$.
- \triangleright λ is a solution of the characteristic equation det $(\lambda I A) = 0$.

Eigenvectors & Bases for Eigenspaces

23rd Aug 16

Finding Eigenvectors &Bases for Eigenspaces *23rd Aug 16*

 \triangleright Since the eigenvectors corresponding to an eigenvalue λ of a matrix A are the nonzero vectors that satisfy the equation:

$$
(\lambda I - A)x = 0
$$

- \triangleright These eigenvectors are the nonzero vectors in the null space of the matrix $\lambda I - A$.
- \triangleright This null space is known as the eigenspace of A corresponding to λ .
- \triangleright The eigenspace of A corresponding to the eigenvalue λ is the s olution space of the homogeneous system $\left(\lambda I - A\right)x = 0$.

- \triangleright Bases for Eigenspaces:
- \triangleright Find the bases for the Eigenspaces of the matrix:

$$
A = \left[\begin{array}{cc} 3 & 0 \\ 8 & -1 \end{array} \right]
$$

- \triangleright Solution:
- \triangleright In example 1 we found the characteristic equation of A to be:

$$
(\lambda - 3)(\lambda + 1) = 0
$$

- \triangleright From which we obtained the eigenvalues λ =3 and λ = -1. Thus, there are two Eigenspaces of A, one corresponding to each of these eigenvalues. \lceil ⎤
- \triangleright By definition: $x = \begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$ $x₂$ ⎣ \vert \vert ⎦ ⎥ ⎥
- \triangleright Is an eigenvector of A corresponding to an eigenvalue λ if and only if **x** is a nontrivial solution of ($\lambda I - A$) **x**= **0**, that is:

Example #4 (cont.)

 λ – 3 0 -8 $\lambda +1$ \lceil ⎣ $\left[\begin{array}{cc} \lambda-3 & 0 \\ 0 & 3 & 1 \end{array}\right]$ ⎦ $\overline{}$ x_1 $x₂$ \lceil ⎣ ⎢ $\mathsf I$ ⎤ ⎦ ⎥ $\overline{}$ = 0 0 \lceil ⎣ $\left[\begin{array}{c} 0 \\ 0 \end{array}\right]$ ⎦ $\overline{}$

 \triangleright If λ =3, then this equation becomes:

$$
\left[\begin{array}{cc} 0 & 0 \\ -8 & 4 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right]
$$

⎤

 \vert \vert \vert

⎦

 \triangleright Whose general solution is: \triangleright Or in matrix form: \triangleright Thus: $x_1 = \frac{1}{2}$ 2 $t, x_2 = t$ x_1 $x₂$ ⎡ ⎣ ⎢ $\mathsf I$ ⎤ ⎦ \vert \vert = 1 2 *t t* \lceil ⎣ $\mathsf I$ $\mathsf I$ $\begin{array}{c} \hline \end{array}$ ⎤ ⎦ \vert \vert \vert = *t* 1 2 1 \lceil ⎣ $\mathsf I$ $\mathsf I$ $\begin{array}{c} \hline \end{array}$ 1 2 1 \lceil ⎢ ⎢ \vert ⎤ \vert \vert \vert

Linear Algebra: Eigenvalues & Eigenvectors *by Sadaf Shafquat*

⎦

⎣

23rd Aug 16

Example #4 (cont.)

23rd Aug 16

- \triangleright Is a basis for the eigenspace corresponding to λ =3,
- And $\vert 0 \vert$ is a basis for the eigenspace corresponding to λ = -1. 1 $\mathsf I$ ⎣ $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ ⎦ $\overline{}$

 \triangleright Once the eigenvalues and eigenvectors of a matrix A are found, it is simple to find the eigenvalues and eigenvectors of any positive integer power of A; for example if λ is an eigenvalue of A and **x** is a corresponding eigenvector, then:

$$
A^{2}x = A\big(Ax \big) = A\big(\lambda x \big) = \lambda \big(Ax \big) = \lambda \big(\lambda x \big) = \lambda^{2} x
$$

- \triangleright Which shows that λ^2 is an eigenvalue of A^2 and that **x** is a corresponding eigenvector.
- \triangleright Theorem: If k is a positive integer, λ is an eigenvalue of a matrix A, and **x** is a corresponding eigenvector, then λ^k is an eigenvalue of A^k and **x** is a corresponding eigenvector.

23rd Aug 16

Eigenvalues & Invertibility

23rd Aug 16

 \triangleright Theorem: A square matrix A is invertible if and only if λ =0 is not an eigenvalue of A.

Thankyou

23rd Aug 16