Linear Algebra

Eigenvalues & Eigenvectors

Eigenvalue & Eigenvector

Definition

- For If A is an n x n matrix, then a nonzero vector \mathbf{x} in Rⁿ is called an eigenvector of A (or of the matrix operator T_A) is A \mathbf{x} is a scalar multiple of \mathbf{x} ; that is: A $\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ.
- \triangleright The scalar λ is called an eigenvalue of A (or of T_A), and **x** is said to be an eigenvector corresponding to λ .
- \triangleright The requirement that an eigenvector be nonzero is imposed to avoid the unimportant case A0 = λ 0, which holds for every A and λ .

- Eigenvector of a 2 x 2 matrix:
- The vector $x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector of: $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$

$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

Corresponding to the eigenvalue $\lambda=3$, since

$$Ax = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3x$$

> Geometrically, multiplication by A has stretched the vector x by a

factor of 3.

Computing Eigenvalues & Eigenvectors

23rd Aug 10

 \triangleright Theorem: If A is n x n matrix, then λ is an eigenvalue of A if and only if it satisfies the equation:

$$\det(\lambda I - A) = 0$$

> This is called the characteristic equation of A.

 \triangleright In Example 1 we observed that λ =3 is an eigenvalue of the matrix:

$$A = \left[\begin{array}{cc} 3 & 0 \\ 8 & -1 \end{array} \right]$$

- > But we did not explain how we found it. Use the characteristic equation to find all eigenvalues of this matrix.
- > Solution:
- \triangleright It follows from formula 1 that the eigenvalues of A are the solutions of the equation det $(\lambda I A) = 0$, which can be written as:

$$\begin{vmatrix} \lambda - 3 & 0 \\ -8 & \lambda + 1 \end{vmatrix} = 0$$

From which we obtain: $(\lambda - 3)(\lambda + 1) = 0$

Example #2 (cont.)

This shows that the eigenvalues of A are $\lambda=3$ and $\lambda=-1$. Thus, in addition to the eigenvalue $\lambda=3$ noted in example 1, we have discovered a second eigenvalue $\lambda=-1$.

Characteristic Polynomial

- When the determinant det $(\lambda I A)$ that appears on the left side of 1 is expanded, the result is a polynomial p (λ) of degree n that is called the characteristic polynomial of A.
- In general, the characteristic polynomial of an n x n matrix has the form:

 $p(\lambda) = \lambda^n + c_1 \lambda^{n-1} + \dots + c_n$

 \triangleright In which the coefficient of λ^n is 1. Since polynomial of degree n has at most n distinct roots, it follows that the equation:

$$\lambda^{n} + c_{1}\lambda^{n-1} + ... + c_{n} = 0$$

- ➤ Has at most n distinct solutions and consequently that an n x n matrix has at most n distinct eigenvalues.
- ➤ It is possible for a matrix to have complex eigenvalues, even if that matrix itself has real entries.

Find the eigenvalues of
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$

- > Solution:
- The characteristic polynomial of A is:

$$\det(\lambda I - A) = \det\begin{bmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -4 & 17 & \lambda - 8 \end{bmatrix} = \lambda^3 - 8\lambda^2 + 17\lambda - 4$$

The eigenvalues of A must therefore satisfy the cubic equation:

$$\lambda^3 - 8\lambda^2 + 17\lambda - 4 = 0$$

The only possible integer solutions of 4 are the divisors of -4, that is, ± 1 , ± 2 , ± 4 .

Example #3 (cont.)

- \triangleright Substituting these values shows that λ = 4 is an integer solution.
- \triangleright As a consequence, $\lambda 4$ must be a factor of the left side of 4.
- Dividing $\lambda 4$ into λ^3 8 $\lambda^2 + 17\lambda 4$ shows that 4 can be rewritten as: $(\lambda 4)(\lambda^2 4\lambda + 1) = 0$
- > Thus, the remaining solutions of 4 satisfy the quadratic equation:

$$\lambda^2 - 4\lambda + 1 = 0$$

➤ Which can be solved by the quadratic formula. Thus the eigenvalues of A are:

$$\lambda = 4$$
, $\lambda = 2 + \sqrt{3}$, and $\lambda = 2 - \sqrt{3}$

Theorem

➤ If A is an n x n triangular matrix (upper triangular, lower triangular or diagonal), then the eigenvalues of A are the entries on the main diagonal of A.

For example: By inspection, the eigenvalues of the lower triangular

matrix:

$$A = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & \frac{2}{3} & 0 \\ 5 & -8 & -\frac{1}{4} \end{bmatrix}$$

are
$$\lambda = \frac{1}{2}$$
, $\lambda = \frac{2}{3}$ and $\lambda = -\frac{1}{4}$

Theorem (cont.)

- > If A is an n x n matrix, the following statements are equivalent:
 - \triangleright λ is an eigenvalue of A.
 - \triangleright The system of equations ($\lambda I A$) $\mathbf{x} = 0$ has nontrivial solutions.
 - \triangleright There is a nonzero vector **x** such that A**x** = λ **x** .
 - \triangleright λ is a solution of the characteristic equation det $(\lambda I A) = 0$.

Eigenvectors & Bases for Eigenspaces

Finding Eigenvectors & Bases for Eigenspaces

23rd Aug 10

 \triangleright Since the eigenvectors corresponding to an eigenvalue λ of a matrix A are the nonzero vectors that satisfy the equation:

$$(\lambda I - A)x = 0$$

- These eigenvectors are the nonzero vectors in the null space of the matrix $\lambda I A$.
- \succ This null space is known as the eigenspace of A corresponding to λ .
- The eigenspace of A corresponding to the eigenvalue λ is the solution space of the homogeneous system $(\lambda I A)x = 0$.

- Bases for Eigenspaces:
- Find the bases for the Eigenspaces of the matrix: $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$
- > Solution:
- In example 1 we found the characteristic equation of A to be:

 $(\lambda - 3)(\lambda + 1) = 0$ From which we obtained the eigenvalues λ =3 and λ = -1. Thus, there

- are two Eigenspaces of A, one corresponding to each of these eigenvalues.
- $x = \left| \begin{array}{c} x_1 \\ x_2 \end{array} \right|$ By definition:
- \triangleright Is an eigenvector of A corresponding to an eigenvalue λ if and only if **x** is a nontrivial solution of ($\lambda I - A$) **x**= **0**, that is:

Example #4 (cont.)

$$\begin{bmatrix} \lambda - 3 & 0 \\ -8 & \lambda + 1 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

 \triangleright If λ =3, then this equation becomes:

$$\begin{bmatrix} 0 & 0 \\ -8 & 4 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

- Whose general solution is: $x_1 = \frac{1}{2}t$, $x_2 = t$
- \triangleright Or in matrix form: $\begin{bmatrix} x_1 \end{bmatrix} = \frac{1}{-t}$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}t \\ t \end{bmatrix} = t \begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}$$

Thus: $\frac{1}{2}$

Example #4 (cont.)

- \triangleright Is a basis for the eigenspace corresponding to $\lambda=3$,
- > And $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is a basis for the eigenspace corresponding to λ = -1.

Powers of a Matrix

 \triangleright Once the eigenvalues and eigenvectors of a matrix A are found, it is simple to find the eigenvalues and eigenvectors of any positive integer power of A; for example if λ is an eigenvalue of A and \mathbf{x} is a corresponding eigenvector, then:

$$A^{2}x = A(Ax) = A(\lambda x) = \lambda(Ax) = \lambda(\lambda x) = \lambda^{2}x$$

- \triangleright Which shows that λ^2 is an eigenvalue of A^2 and that \mathbf{x} is a corresponding eigenvector.
- Theorem: If k is a positive integer, λ is an eigenvalue of a matrix A, and \mathbf{x} is a corresponding eigenvector, then λ^k is an eigenvalue of A^k and \mathbf{x} is a corresponding eigenvector.

Eigenvalues & Invertibility

 \triangleright Theorem: A square matrix A is invertible if and only if $\lambda=0$ is not an eigenvalue of A.

Thankyou