Linear Algebra

General Vector Spaces

16th Aug 16

Linear Algebra: General Vector Spaces

Linear Independence

16th Aug 16

Linear Algebra: General Vector Spaces

Example

Suppose we have two vectors:

Linear Algebra: General Vector Spaces

Linearly Independence & Dependence

- ➢ Definition: If S=(v₁, v₂,....,v_r) is a nonempty set of vectors in a vector space V, then the vector equation $k_1v_1 + k_2v_2 + + k_rv_r = 0$, has at least one solution namely: $k_1 = 0$, $k_2 = 0$,..., $k_r = 0$.
- > This is known as the trivial solution.
- ➢ If this is the only solution, then S is said to be a linearly independent set.
- If there are solution in addition to the trivial solution, then S is said to be a linearly dependent set.

- > Determine whether the vectors: $\mathbf{v}_1 = (1, -2, 3)$, $\mathbf{v}_2 = (5, 6, -1)$, $\mathbf{v}_3 = (3, 2, 1)$ are linearly independent or linearly dependent in R³.
- Solution:
 - ➤ The linear independence or linear dependence of these vectors is determined by whether there exist nontrivial solution of the vector equation: $k_1v_1 + k_2v_2 + k_3v_3 = 0$ or equivalently of $k_1(1,-2,3) + k_2(5,6,-1) + k_3(3,2,1) =$ (0,0,0)
 - Equating corresponding components on two sides yields the homogeneous linear system: k + 5k + 3k = 0

$$\kappa_1 + 3\kappa_2 + 3\kappa_3 = 0$$
$$-2k_1 + 6k_2 + 2k_3 = 0$$
$$3k_1 - k_2 + k_3 = 0$$

Thus our problem reduces to determining whether this system has non trivial solutions. There are various ways to do this; one possibility is to simply solve the system which yields:

$$k_1 = -\frac{1}{2}t, k_2 = -\frac{1}{2}t, k_3 = t$$

Linear Algebra: General Vector Spaces

Example #1 (cont.)

- Omit the details. This shows that the system has non trivial solutions and hence that the vectors are linearly dependent.
- Second method for obtaining the same result is to compute the determinant of the coefficient matrix.
- If the det (A) = 0, then there will be non trivial solutions and the vectors will be linearly dependent.

Spanning Vectors

➢ Definition: The vectors v₁,...,vₙ in V span V if every vector V ∈ V is a linear combination k₁v₁+k₂v₂+...+kₙvₙ of v₁,...., vₙ.

Linear Algebra: General Vector Spaces

Test the following vectors for linear independence? $u_1 = (1,0,0,1), u_2 = (1,0,1,0), u_3 = (0,1,1,0)$ We set: $x_1(1,0,0,1) + x_2(1,0,1,0) + x_3(0,1,1,0) = (0,0,0,0)$ $x_1 + x_2 = 0$ \blacktriangleright This vector equation really four equations: $x_{3} = 0$ $x_2 + x_3 = 0$ $x_1 = 0$ > The only solutions are: $x_1 = x_2 = x_3 = 0$

So the vectors (1,0,0,1), (1,0,1,0), (0,1,1,0) are Linearly Independent.

16th Aug 16

Alternative Interpretation of Linear Independence

Theorem: A set S with two or more vectors is:

- ➤ (a): Linearly dependent if and only if at least one of the vectors in S is expressible as a linear combination of the vectors in S.
- (b): Linearly independent if and only if no vectors in S is expressible as a linear combination of the other vectors in S.

16th Aug 16

Sets with One or Two vectors

> Theorem:

- (a): a finite set that contains **0** is linearly dependent.
- (b): A set with exactly one vector is linearly independent if and only if that vector is not 0.
- (c): A set with exactly two vectors is linearly independent if and only if neither vector is a scalar multiple of the other.

Geometric Interpretation of Linear Independence

- Linear independence has the following useful geometric interpretations in R² and R³:
 - Two vectors in R² or R³ are linearly independent if and only if they do not lie on the same line when they have their initial points at the origin. Otherwise one would be a scalar multiple of the other.

Linear Algebra: General Vector Spaces

by Sadaf Shafquat

16th Aug 16

Geometric Interpretation of Linear Independence (cont.)

Three vectors in R³ are linearly independent if and only if they do not lie in the same plane when they have their initial points at the origin. Otherwise at least one would be a linear combination of the other two.

Linear Algebra: General Vector Spaces

Basis for a Vector Space

16th Aug 16

Linear Algebra: General Vector Spaces

Basis

- Definition: If V is any vector space and S= (v₁, v₂,..., v_n) is a finite set of vectors in V, then S is called a basis for V if the following two conditions hold:
 - ➤ (a): S is linearly independent.
 - (b) S spans V.

- \succ The standard basis for \mathbb{R}^n .
- Suppose that the standard unit vectors: $e_1 = (1,0,0,...,0), e_2 = (0,1,0,...,0), e_n = (0,0,...,1)$
- Span Rⁿ and they are linearly independent. Thus, they form a basis for Rⁿ that we call the standard basis for Rⁿ.
- In particular, i= (1,0,0), j= (0,1,0), k= (0,0,1) is the standard basis for R³.

- \succ The standard basis for M_{mn} :
- Show that the matrices:

$$M_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, M_{2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, M_{3} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, M_{4} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Form a basis for the vector space M_{22} of 2 x 2 matrices:

- > Solution:
 - > We must show that the matrices are linearly independent and span M_{22} . To prove linear independence we must show that the equation:

$$c_1 M_1 + c_2 M_2 + c_3 M_3 + c_4 M_4 = 0$$

Has only the trivial solution, where **0** is the 2 x 2 zero matrix; and to prove that the matrices span M₂₂ we must show that every 2 x 2 matrix:

$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Example #4 (cont.)

Can be expressed as:

$$c_1 M_1 + c_2 M_2 + c_3 M_3 + c_4 M_4 = B$$

The matrix forms of both the equations are:

$$c_{1} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + c_{2} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c_{3} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + c_{4} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

and
$$c_{1} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + c_{2} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c_{3} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + c_{4} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Which can be rewritten as:

$$\begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad and \quad \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Linear Algebra: General Vector Spaces

Example #4 (cont.)

Since the first equation has only the trivial solution:

$$c_1 = c_2 = c_3 = c_4 = 0$$

- The matrices are linearly independent and since the second equation has the solution: $c_1 = a, c_2 = b, c_3 = c, c_4 = d$
- > The matrices span M_{22} . This proves that the matrices M_1 , M_2 , M_3 , M_4 form a basis for M_{22} .
- More generally, the mn different matrices whose entries are zero except for a single entry of 1 form a basis for M_{mn} called the standard basis for M_{mn}.

Thankyou

16th Aug 16

Linear Algebra: General Vector Spaces