Signal & Systems

Continuous & Discrete Signals

19TH October 16

Signal & Systems: Continuous & Discrete time Signals

Classification of Signals

19TH October 16

Signal & Systems: Continuous & Discrete time Signals

Continuous-Time Complex Exponential

 \clubsuit The continuous-time complex exponential signal is of the form:

$$
x(t) = Ce^{at}
$$
, where C, $a \in C$

❖ Depending upon the values of these parameters, the complex exponential can exhibit several different characteristics.

Real Exponential Signals

- ❖ If C and a are real there are basically two types of behaviour.
- \clubsuit If a is positive, then as t increase $x(t)$ is a growing exponential, i.e., when $a>0$.
- \clubsuit If a is negative then x(t) is a decaying exponential, i.e., when a<0.
- * When a=0 then $x(t)$ is constant.

Signal & Systems: Continuous & Discrete time Signals

Periodic Complex Exponential

- \cdot Let's consider the case where a is purely imaginary, i.e., a = jω₀, ω₀ belongs to R.
- [◆] Since C is a complex number, we have: $C = Ae^{j\theta}$ where A, θ belongs to R.
- $\mathbf{\hat{v}}$ Consequently: $x(t) = Ce^{j\omega_0 t} = Ae^{j\theta}e^{j\omega_0 t}$

$$
= Ae^{j(\omega_0 t + \theta)} = A\cos(\omega_0 t + \theta) + jA\sin(\omega_0 t + \theta)
$$

 \cdot The real and imaginary parts of x(t) are:

$$
\operatorname{Re}\left\{x(t)\right\} = A\cos\left(\omega_0 t + \theta\right)
$$

$$
\operatorname{Im}\left\{x(t)\right\} = A\sin\left(\omega_0 t + \theta\right)
$$

Periodic Complex Exponential (cont.)

❖ We can think of x(t) as a pair of sinusoidal signals of the same amplitude A, ω_0 and phase shift θ with one a cosine and the other a sine.

Periodic complex exponential function $x(t)$ = Ce^{jω0t}, C=1, ω_0 =2 π

Signal & Systems: Continuous & Discrete time Signals

Periodic Complex Exponential (cont.) *19TH October 16*

 \therefore $x(t) = Ce^{j\omega_0 t}$ is periodic with:

- $\mathbf{\hat{v}}$ Fundamental period: T₀ = 2π/|ω₀|
- \cdot Fundamental frequency: $|\omega_0|$
- \clubsuit the second claim is the immediate result from the first claim. To show the first claim, we need to show that $x(t+T_0) = x(t)$ and no smaller T_0 can satisfy the periodicity criteria.

$$
x(t+T_0) = Ce^{j\omega_0\left(t + \frac{2\pi}{|\omega_0|}\right)} = Ce^{j\omega_0 t}e^{\pm j2\pi}
$$

= Ce^{j\omega_0 t} = x(t)

 \diamondsuit It is easy to show that T₀ is the smallest period.

General Complex Exponential

- \clubsuit The most general case of a complex exponential can be expressed and interpreted in terms of the two cases: the real exponential and the periodic complex exponential.
- ❖ Consider a complex exponential Ce^{at}, where C is expressed in polar form and a in rectangular form. I.e.,

$$
C = |C|e^{j\theta}
$$

 $\mathbf{\hat{z}}$ And:

$$
a = r + j\omega_0
$$

☆ Then:

$$
Ce^{at} = |C|e^{j\theta}e^{(r+j\omega_0)t} = |C|e^{rt}e^{j(\omega_0t+\theta)}
$$

❖ Using Euler's relation, we can expand this further as:

$$
Ce^{at} = |C|e^{rt} \cos(\omega_0 t + \theta) + j|C|e^{rt} \sin(\omega_0 t + \theta)
$$

19TH October 16

General Complex Exponential (cont.) *19TH October 16*

- \cdot Thus for r=0, the real and imaginary parts of a complex exponential are sinusoidal.
- \clubsuit For r>0 they correspond to sinusoidal signals multiplied by a growing exponential.
- \cdot For r < 0, they correspond to sinusoidal signals multiplied by a decaying exponential.
- ❖ As shown below: (a) is growing sinusoidal signal when r>0, (b) is decaying sinusoid when r<0.

General Complex Exponential (cont.) *19TH October 16*

❖ Sinusoidal signals multiplied by decaying exponentials are commonly referred to as damped signals.

Discrete-Time Complex Exponential

October 16

❖ A discrete-time complex exponential function has the form:

$$
x[n] = Ce^{\beta n}
$$

• Where C, β belongs to Complex. Letting $\alpha = e^{\beta}$:

$$
x[n] = C\alpha^n
$$

Real-valued Complex Exponential *19TH October 16*

- \cdot x[n] is a real-valued complex exponential when C belongs to R and α belongs to R.
- In this case, $x[n] = C\alpha^n$ is a monotonic decreasing function when $0 < \alpha < 1$ and is a monotonic increasing when $\alpha > 1$.

Complex-valued Complex Exponential *19TH October 16*

- \cdot x[n] is a complex-valued complex exponential when C, α belongs to complex.
- \cdot In this case C and α can be written as:

$$
C = |C|e^{j\theta} \quad and \quad \alpha = |\alpha|e^{j\Omega_0}
$$

\n
$$
Comsequently,
$$

\n
$$
x[n] = C\alpha^n = |C|e^{j\theta} (|\alpha|e^{j\Omega_0})^n
$$

\n
$$
= |C||\alpha|^n e^{j(\Omega_0 n + \theta)}
$$

\n
$$
= |C||\alpha|^n \cos(\Omega_0 n + \theta) + j|C||\alpha|^n \sin(\Omega_0 n + \theta)
$$

Complex-valued Complex Exponential (cont.) *19TH October 16*

- ❖ Three cases can be considered here:
	- \bullet When |α|=1, then x[n] = |C|cos (Ω₀n+θ) + j |C|sin (Ω₀n+θ) and it has sinusoidal real and imaginary parts (not necessarily periodic though).
	- When $|\alpha| > 1$, then $|\alpha|^n$ is a growing exponential, so the real and imaginary parts of $x[n]$ are the product of this with sinusoids.
	- \cdot When $|\alpha|$ < 1, then the real and imaginary parts of x[n] are sinusoids sealed by a decaying exponential.

Periodic Complex Exponential

19TH October 16

- \triangleleft Consider $x[n] = Ce^{j\Omega_0 n}, \Omega_0 \in R$. We want to study the condition for $x[n]$ to be periodic.
- \clubsuit The periodicity condition requires that, for some N>0,

$$
x[n+N] = x[n], \quad \forall n \in \mathbb{Z}
$$

 $\mathbf{\hat{*}}$ Since $x[n] = Ce^{i\Omega_0 n}$, it holds that:

$$
e^{j\Omega_0(n+N)} = e^{j\Omega_0 n}e^{j\Omega_0 N} = e^{j\Omega_0 n}, \quad \forall n \in \mathbb{Z}
$$

 \clubsuit This is equivalent to:

 $e^{j\Omega_0 N} = 1$ *or* $\Omega_0 N = 2\pi m$, *for some* $m \in \mathbb{Z}$

 \cdot Therefore, the condition for periodicity of x[n] is: $\Omega_0 = \frac{2\pi m}{N}$

❖ For some m belongs to Z and some N>0, N belongs to Z.

N

Periodic Complex Exponential (cont.) *19TH October 16*

- $\mathbf{\hat{P}}$ Thus x[n] = $e^{j\Omega \circ n}$ is periodic if and only if Ω_0 is a rational multiple of 2π.
- \clubsuit The fundamental period is:

$$
N = \frac{2\pi m}{\Omega_0}
$$

* Where we assume that m and N are relatively prime, gcd (m,n) =1, i.e., m/N is in reduced form.

Impulse & Step Functions

19TH October 16

Signal & Systems: Continuous & Discrete time Signals

Discrete-time Impulse & Step Functions

• The discrete-time unit impulse signal $\delta[n]$ is defined as:

$$
\delta(n) = \begin{cases} 1 & \text{for} & n = 0 \\ 0 & \text{for} & n \neq 0 \end{cases}
$$

❖ The discrete-time unit step signal u[n] is defined as:

$$
u(n) = \begin{cases} 1 & \text{for} \quad n \ge 0 \\ 0 & \text{for} \quad n < 0 \end{cases}
$$

Signal & Systems: Continuous & Discrete time Signals

Relationship B/w Unit Impulse & Unit Step Sequences *19TH October 16*

- \clubsuit Discrete time unit impulse is the first difference of the discrete time unit step. I.e.; $\delta[n]$ =u[n]-u[n-1]
- \clubsuit Discrete time unit step is the running sum of the discrete time unit impulse or unit sample. i.e.;

$$
u[n] = \sum_{m=-\infty}^{n} \delta[m]
$$

Property of δ[n]

❖ Sampling Property:

- $\mathbf{\hat{P}}$ By the definition δ[n], δ[n-n₀] = 1 if n=n₀ and 0 otherwise.
- Therefore, $x[n]\delta[n-n_0] = \begin{cases} x[n], & n = n_0 \end{cases}$ 0, $n \neq n_0$ $\sqrt{ }$ ⎨ $\overline{}$ $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ $=\left[x \right] n_0 \left[\delta \left[n - n_0 \right] \right]$
- \cdot As a special case when n₀=0, we have x[n] δ [n]=x[0] δ [n].
- When a signal x[n] is multiplied with $\delta[n]$, the output is a unit impulse with amplitude $x[0]$.

Property of δ[n]

\div Shifting Property:

 \cdot Since x[n] δ [n]= x[0] δ [n] and $\sum \delta$ [n]=1, we have $\sum \delta[n] = 1$

$$
\sum_{n=-\infty}^{\infty} x[n]\delta[n] = \sum_{n=-\infty}^{\infty} x[0]\delta[n] = x[0]\sum_{n=-\infty}^{\infty} \delta[n] = x[0]
$$

* And similarly: $x[n]\delta\left[n - n_0\right]$ *n*=−∞ ∞ $\sum x[n]\delta[n-n_0] = \sum x[n_0]\delta[n-n_0]$ *n*=−∞ ∞ $\sum x[n_0] \delta[n-n_0] = x[n_0]$

∞

❖ In general, the following result holds:

$$
\sum_{n=a}^{b} x[n]\delta[n-n_0] = \begin{cases} x[n_0], & \text{if } n_0 \in [a,b] \\ 0, & \text{if } n_0 \notin [a,b] \end{cases}
$$

19TH October 16

Continuous-time Impulse & Step Functions

❖ The Dirac delta is defined as:

$$
\delta(t) = \begin{cases} 1 & \text{for } t = 0 \\ 0 & \text{for } t \neq 0 \end{cases}
$$

❖ Where:

$$
\int_{-\infty}^{\infty} \delta(t) dt = 1
$$

❖ The unit step function is defined as:

$$
u(t) = \begin{cases} 1 & \text{for} \quad t \ge 0 \\ 0 & \text{for} \quad t < 0 \end{cases}
$$

Signal & Systems: Continuous & Discrete time Signals

by Sadaf Shafquat

October 16

Property of δ[t]

- \cdot The properties of $\delta(t)$ are analogous to the discrete-time case:
- \dots **Sampling Property:**

$$
x(t)\delta(t) = x(0)\delta(t)
$$

 \cdot Note that x(t) δ (t) = x(0) when t=0 and x(t) δ (t) =0 when t≠0.

❖ Similarly we have:

$$
x(t)\delta(t - t_0) = x(t_0)\delta(t - t_0)
$$

for any $t_0 \in R$

Property of δ[n]

❖ Shifting Property:

- ❖ The shifting property follows from the sampling property.
- \cdot Integrating x(t) $\delta(t)$ yields:

$$
\int_{-\infty}^{\infty} x(t) \delta(t) dt = \int_{-\infty}^{\infty} x(0) \delta(t) dt = x(0) \int_{-\infty}^{\infty} \delta(t) dt = x(0)
$$

❖ Similarly, one can show that:

$$
\int_{-\infty}^{\infty} x(t) \delta(t - t_0) dt = x(t_0)
$$

Energy & Power Signals

19TH October 16

Signal & Systems: Continuous & Discrete time Signals

Discrete-time Energy & Power Signals *19TH October 16*

 \clubsuit The energy of discrete time signal x(n) can be represented by:

$$
E=\sum_{n=-\infty}^{\infty}\big|x(n)\big|^2
$$

- * If the energy of the signal $x(n)$ is finite i-e.; 0<E<∞, the signal is called an energy signal.
- * The average power P of discrete time signal is represented by:

$$
P = \lim_{N \to \infty} \frac{1}{2N+1} \left\{ \sum_{n=-N}^{N} \left| x(n) \right|^2 \right\}
$$

 \clubsuit The signal x(n) is said to be power signal if 0<P< ∞ .

Continuous-time Energy & Power Signals *19TH October 16*

- \clubsuit A signal with finite signal energy is called an energy signal.
- ◆ A signal with infinite signal energy and finite average signal power is called a power signal.
- \cdot In signal processing, total energy of signal x(t) is defined as:

$$
E(t) = \lim_{L \to \infty} \int_{-L}^{L} |x(t)|^2 dt = \int_{-\infty}^{\infty} |x(t)|^2 dt
$$

- \div Where $|x(t)|$ denotes the magnitude of $x(t)$
- \cdot Energy of a signal is defined as a sum of square of magnitude.
- \clubsuit The average power of a signal is defined as:

$$
P(t) = \lim_{L \to \infty} \frac{1}{2L} \int_{-L}^{L} |x(t)|^2 dt = \lim_{L \to \infty} \frac{E(t)}{2L}
$$

 \cdot If x(t) is periodic, then its average power becomes:

$$
P = \frac{1}{T} \int_{0}^{T} \left| x(t) \right|^2 dt
$$

Continuous-time Energy & Power Signals (cont.) *19TH October 16*

- \clubsuit An energy signal has finite energy, 0 < E< ∞ and P=0.
- $\cdot \cdot$ I-e; energy signals have values only in limited time duration.
- \cdot Power signal is not limited in time.
- \cdot It always exist from beginning to end and it never ends.
- \clubsuit For example, sine wave in infinite length is power signal.
- ◆ The energy of power signal is infinite but the power of the power signal is finite, $0 < P < \infty$ and $E = \infty$.
- ❖ A signal can be an energy signal, power signal or neither type.
- \clubsuit A signal can not be both an energy signal and a power signal.

Example #1

- ❖ Find whether the following signals are energy signal, power signal or neither of them:
	- $\mathbf{\hat{*}}$ x(n)=(-0.3)ⁿu(n)
	- $\div x(n)=2u(n)$
	- $\mathbf{\hat{v}}\mathbf{y}(t) = A \sin(\omega_0 t + \theta)$
	- $\mathbf{\hat{v}}\mathbf{y}(t) = e^{-bt} u(t)$

Thankyou

19TH October 16

Signal & Systems: Continuous & Discrete time Signals