Signal & Systems

Fourier Series-II

11th November 16

Convergence of the Fourier Series

11th November 16

Existence of Fourier Series

- ***** To understand the validity of Fourier Series representation, lets examine the problem of approximation a given periodic signal $x(t)$ by a linear combination of a finite number of harmonically related complex exponentials.
- \clubsuit That is by finite series of the form:

$$
x_N\left(t\right) = \sum_{k=-N}^N a_k e^{jk\omega_0 t}
$$

* Let $e_N(t)$ denote the approximation error; i.e.,

$$
e_N(t) = x(t) - x_N(t) = x(t) - \sum_{k=-N}^{N} a_k e^{jk\omega_0 t}
$$

◆ The criterion that we will use is the energy in the error over one period: $E_N(t) = \int_{-\infty}^{\infty} |e_N(t)|^2 dt$ ∫

T

Existence of Fourier Series (cont.) *11th November 16*

 \cdot To achieve min E_N , one should define:

$$
a_k = \frac{1}{T} \int\limits_T x(t) e^{-jk\omega_0 t} dt
$$

- ❖ As N increases, E_N decreases and as N $\rightarrow \infty$ E_N is zero.
- $\mathbf{\hat{v}}$ If $a_k \rightarrow \infty$ the approximation will diverge.
- ***** Even for bounded a_k the approximation may not be applicable for all periodic signals.

Convergence Conditions of Fourier Series Approximation *11th November 16*

❖ Energy of signal should be a finite in a period:

$$
\int\limits_T \left|x(t)\right|^2 dt < \infty
$$

- \cdot This condition only guarantees E_N → 0.
- \cdot It does not guarantee that x(t) equals to its Fourier series at each moment t.
- ❖ Dirichlet Conditions:
	- \cdot Over any period x(t) must be absolutely integrable.
	- In any finite interval of time $x(t)$ is of bounded variation, i.e., there are no more than a finite number of maxima and minima during any single period of the signal.
	- \clubsuit In any finite interval of time, there are only a finite number of discontinuities.

Gibbs Phenomenon

- * Near a point where x(t) has a jump discontinuity, the partial sums x_{N} (t) of a Fourier series exhibit a substantial overshoot near these endpoints.
- * An increase in N will not diminish the amplitude of the overshoot, although with increasing N the overshoot occurs over smaller and smaller intervals.
- ❖ This phenomenon is known as Gibbs Phenomenon.

Gibbs Phenomenon (cont.)

How many Fourier Series Coefficients are sufficient?

N

11th November 16

$$
\mathbf{\hat{P}} \text{ If we define:} \quad x_N(t) = \sum_{k=-N}^{N} a_k e^{jk\omega_0 t}
$$

- \cdot Then $x_N(t)$ is an approximation of x(t). As N approaches to infinity, then $x_{N}(t)$ approaches to $x(t)$.
- ***** Therefore the number of Fourier series coefficients depends on the accuracy that we want to achieve.
- ❖ Typically, the number N is chosen such that the residue of the approximation: ∞

$$
\int_{-\infty}^{\infty} \left| x(t) - x_N(t) \right|^2 dt \le \varepsilon
$$

 \dots For some target error level ε.

How many Fourier Series Coefficients are sufficient?

11th November 16

Fourier Series Representation of Discrete-Time Periodic Signals *Periodic Signals 16*

Fourier Series Representation of DT 11th November 16

❖ The Fourier series representation of a discrete-time periodic signal is finite as opposed to the infinite series representation required for continuous-time periodic signals.

Linear Combinations of Harmonically Related Complex Exponentials *11th November 16*

- * A discrete-time signal x[n] is periodic with period N if: x[n] = x[n+N].
- \clubsuit The fundamental period is the smallest positive N and the fundamental frequency is $\omega_0 = \frac{2\pi}{N}$. *N*
- \clubsuit The set of all discrete-time complex exponential signals that are periodic with period N is given by:

$$
\phi_k[n] = e^{jk\omega_0 n} = e^{jk(2\pi/N)n}, \quad k = 0, \pm 1, \pm 2, \dots
$$

- \clubsuit All of these signals have fundamental frequencies that are multiples of $2\pi/N$ and thus are harmonically related.
- ❖ There are only N distinct signals in the set this is because the discretetime complex exponentials which differ in frequency by a multiple of 2π are identical. That is:

$$
\phi_k[n] = \phi_{k+rN}[n]
$$

Linear Combinations of Harmonically Related Complex Exponentials (cont.) *11th November 16*

 \clubsuit The representation of periodic sequences in terms of linear combinations of the sequences $\Phi_k[n]$ is:

$$
x[n] = \sum_{k} a_{k} \phi_{k}[n] = \sum_{k} a_{k} e^{jk\omega_{0}n} = \sum_{k} a_{k} e^{jk(2\pi/N)n}
$$

- \cdot Since the sequences $\Phi_k[n]$ are distinct over a range of N successive values of k, the summation in above equation need include terms over this range.
- ❖ Thus the summation is on k as k varies over a range of N successive integers beginning with any value of k.
- * We indicate this by expressing the limits of the summation as k=<N>. That is:

$$
x[n] = \sum_{k \leq N} a_k \phi_k[n] = \sum_{k \leq N} a_k e^{jk\omega_0 n} = \sum_{k \leq N} a_k e^{jk(2\pi/N)n}
$$

Discrete-Time Fourier Series Coefficients

11th November 16

- **→** Assuming x[n] is square-summable i.e., $\sum |x[n]|^2 < \infty$ or x[n] satisfies the Dirichlet conditions. $\sum |x[n]|^2 < \infty$ *n*=−∞ ∞
- \cdot In this case we have:

$$
x[n] = \sum_{k \in \langle N \rangle} a_k e^{jk\omega_0 n} = \sum_{k \in \langle N \rangle} a_k e^{jk(2\pi/N)n}, \quad \text{Synthesis} \quad Equation
$$

$$
a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk\omega_0 n} = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk(2\pi/N)n}, \quad Analysis \quad Equation
$$

- ❖ As in continuous time, the discrete-time Fourier series coefficient a_k are often referred to as the spectral coefficients of $x[n]$.
- \clubsuit These coefficients specify a decomposition of x[n] into a sum of N harmonically related complex exponentials.

Example #1

❖ Consider the signal:

$$
x[n] = \sin \omega_0 n
$$

❖ Which is the discrete-time counterpart of the signal $x(t) = \sin \omega_0 t$.

 $\mathbf{\hat{*}}$ x[n] is periodic only if $2\pi/\omega_0$ is an integer or a ratio of integers.

Example #2

***** Lets consider the discrete-time periodic square wave shown below:

- ❖ Determine the discrete-time Fourier series coefficient.
- ❖ Solution:
- \cdot The coefficients a_k for 2N₁+1=5 are sketched for N=10,20 and 40 in figures below:

骨

Example #2 (cont.)

11th November 16

Properties of Fourier Series Coefficients

11th November

16

Linearity

❖ For continuous-time Fourier series, we have:

$$
x_1(t) \leftrightarrow a_k \quad and \quad x_2(t) \leftrightarrow b_k
$$

$$
Ax_1(t) + Bx_2(t) \leftrightarrow Aa_k + Bb_k
$$

❖ For Discrete-time case, we have:

$$
x_1[n] \leftrightarrow a_k \quad and \quad x_2[n] \leftrightarrow b_k
$$

$$
Ax_1[n] + Bx_2[n] \leftrightarrow Aa_k + Bb_k
$$

Time Shift

11th November 16

$$
x(t - t_0) \Longleftrightarrow a_k e^{-jk\omega_0 t_0}
$$

$$
x[n - n_0] \Longleftrightarrow a_k e^{-jk\Omega_0 n_0}
$$

❖ Proof: Let us consider the Fourier series coefficient b_k of the signal $y(t)=x(t-t_0).$ $b_k =$ 1 *T* $x(t-t_0)e^{-j\omega_0t}$ *dt* ∫

 $\mathbf{\hat{v}}$ Letting τ = t-t₀ in the integral, we obtain: *T*

$$
\frac{1}{T}\int_T^{\infty} x(\tau)e^{-jk\omega_0(\tau+t_0)} dt = e^{-jk\omega_0t_0}\frac{1}{T}\int_T^{\infty} x(\tau)e^{-jk\omega_0\tau} dt
$$

where
$$
x(t) \leftrightarrow a_k
$$
. Therefore,

$$
x(t-t_0) \Longleftrightarrow a_k e^{-jk\omega_0 t_0}
$$

Time Reversal

$$
x(-t) \leftrightarrow a_{-k}
$$

$$
x[-n] \leftrightarrow a_{-k}
$$

 $\mathbf{\hat{P}}$ Proof: Consider a signal $y(t) = x(-t)$. The Fourier series representation of $x(-t)$ is: ∞ <u>रा</u>

$$
x(-t) = \sum_{k=1}^{\infty} a_k e^{-jk2\pi t/T}
$$

 $\mathbf{\hat{v}}$ Letting k = -m, we have:

$$
y(t) = x(-t) = \sum_{m = -\infty}^{\infty} a_{-m} e^{jm2\pi t/T}
$$

∞

※ Thus:

$$
x(-t) \leftrightarrow a_{-k}
$$

Time Scaling

- \clubsuit Time scaling is an operation that in general changes the period of the underlying signal.
- * Specifically if $x(t)$ is periodic with period T and fundamental frequency $ω₀=2π/T$, then x(αt), where α is a positive real number, is periodic with period T/α and fundamental frequency $\alpha\omega_0$.

Example #3

* Consider the signal g(t) with a fundamental period of 4 shown below:

- ❖ Apply Time shift property.
- ❖ Apply Linearity property.

Example #4

11th November 16

❖ Consider the signal shown below:

Thankyou

11th November 16