<u>Lecture Notes</u> 21st November 2016

Mon	DRY/21st, MON 16 JECTURE - 10
JOUR'S	ER TRANSFORM:-
EXAMP	e#1:-
0	$x[n] = a^n u[n]$, $ \alpha \angle 1$
Sou:	$X(e^{j\omega}) = \mathcal{E}_{an} \alpha^n \nu(n) e^{-j\omega n}$
	$= \mathcal{E} \left(\alpha e^{iw} \right)^n$
	Using Geometric series formula: $S = Z r^{\kappa} \Rightarrow 1$
> Greeph	ic shown in slides. All of these functions are peri
IN WE	ic shown in slides. All of these functions are period 27.
in we	is shown in slides. All of these functions are period 27.
in we	ic shown in slides. All of these functions are period 27.
EXAMY	is shown in slides. All of these functions are period 2π . LE #2:- $x(n) = a^{(n)}$, $ a a $
EXAMI	is shown in slides. All of these functions are period 2π . $x(n) = a^{(n)}, a a $ $x(e^{i\omega}) = a^{(n)} e^{-i\omega n}$

Day/Date

$$X(e^{j\omega}) = \frac{1}{1 - ae^{j\omega}} + \frac{1 - ae^{j\omega}}{1 - ae^{j\omega}}$$

$$= \frac{(1 - ae^{j\omega}) + ae^{j\omega} (1 - ae^{j\omega})}{(1 - ae^{j\omega})}$$

$$= \frac{1 - ae^{j\omega} + ae^{j\omega} - ae^{j\omega} + ae^{j\omega-j\omega}}{1 - ae^{j\omega} - ae^{-j\omega} + ae^{-j\omega+j\omega}}$$

$$= \frac{1 - ae^{j\omega} - ae^{-j\omega} + ae^{-j\omega+j\omega}}{1 + ae^{-j\omega+j\omega}}$$

$$= \frac{1 - ae^{j\omega} - ae^{-j\omega} + ae^{-j\omega+j\omega}}{1 + ae^{-j\omega+j\omega}}$$

EXAMPLE # 3:- $X[n] = \omega \omega_{0} = \frac{1}{2} e^{i\omega_{0}n} + \frac{1}{2} e^{i\omega_{0}n}, \quad \omega_{0} = \frac{2\pi}{5}$

Society:
$$V(e^{i\omega}) = \frac{1}{2} \sum_{k=-\infty}^{\infty} 2\pi S(\omega - 2\pi k - 2\pi k) + \frac{1}{2} \sum_{k=-\infty}^{\infty} 2\pi S(\omega + 2\pi k - 2\pi k)$$

$$= \frac{1}{2} \times 2\pi S(\omega - 2\pi k - 2\pi k) + \frac{1}{2} \times 2\pi S(\omega + 2\pi k - 2\pi k)$$

$$= \frac{1}{2} \times 2\pi S(\omega - 2\pi k - 2\pi k) + \frac{1}{2} \times 2\pi S(\omega + 2\pi k - 2\pi k)$$

$$= \frac{1}{2} \times 2\pi S(\omega - 2\pi k - 2\pi k) + \frac{1}{2} \times 2\pi S(\omega + 2\pi k - 2\pi k)$$

$$= \frac{1}{2} \times 2\pi S(\omega - 2\pi k - 2\pi k + 2\pi k - 2\pi k - 2\pi k)$$

$$= \frac{1}{2} \times 2\pi S(\omega - 2\pi k -$$

That is:
$$X(e^{i\omega}) = \pi \delta(\omega - 2\pi) + \pi \delta(\omega + 2\pi)$$
, $-\pi \leq \omega \leq \pi$

Day/Date

> Choosing the interval -TILBLT.

$$X(e^{j\omega}) = \frac{2\pi}{L} \int_{-\pi}^{\pi} X_1(e^{j\Theta}) X_2(e^{j(\omega-\Theta)}) d\Theta$$

- -> Athore equation secondes aperiodic convolution, except for the fact that the interval integration is limited to -17 20 271.
- How ever, we can consult the equation into an ordinarry convolution by defining:

$$\hat{\chi}_{i}(e^{i\omega}) = \begin{cases} \chi_{i}(e^{i\omega}) & \text{for } -\pi \angle \omega \leq \pi \\ 0 & \text{otherwise} \end{cases}$$

> Then replacing $X_1(e^{i\Theta})$ by $\hat{X}_1(e^{i\Theta})$ and using the fact that $\hat{X}_1(e^{i\Theta})$ is zero for 101>T, we have

$$X(e^{i\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{X}_{1}(e^{i\Theta}) X_{2}(e^{i(\omega-\Theta)}) d\Theta$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\pi} \hat{X}_{1}(e^{i\Theta}) X_{2}(e^{i(\omega-\Theta)}) d\Theta$$