Name: Regd. No. Regd. No.

Course Title: Signal & Systems **Course Code:** EL-313

MID SEMESTER EXAMINATION – FALL 2015 Program: B.E. (Electrical)

Solution

SECTION-II: 30 MARKS

Q1. A discrete time signal is shown below. Sketch the following signals:

5. $x[-3n]$

Solution:

1. $x[n-4]$

3. $x[3n]$

5. $x[-3n]$

- 1. $x(t) = e^{-t}u(t)$
- 2. $x(t) = e^{-4t}u(t)$
- 3. $x(t) = t^4 u(t)$

Solution:

1. $x(t) = e^{-t}u(t)$

Let's solve it for Energy signal:

$$
E = \int_0^\infty (e^{-t})^2 dt = \int_0^\infty (e^{-2t}) dt
$$

= $\left[-\frac{1}{2} e^{-2t} \right]_0^\infty = \left[-\frac{1}{2} e^{-2(\infty)} + \frac{1}{2} e^{-2(0)} \right] = \frac{1}{2} < \infty$

Hence, it is an Energy Signal and Power of the signal is $P_{\infty} = 0$.

2. $x(t) = e^{-4t}u(t)$

Let's solve it for Energy signal:

$$
E = \int_0^\infty (e^{-4t})^2 dt = \int_0^\infty (e^{-8t}) dt
$$

= $\left[-\frac{1}{8} e^{-8t} \right]_0^\infty = \left[-\frac{1}{8} e^{-8(\infty)} + \frac{1}{8} e^{-8(0)} \right] = \frac{1}{8} < \infty$

Hence, it is an Energy Signal and Power of the signal is $P_{\infty} = 0$.

$$
x(t) = t^4 u(t)
$$

Let's solve it for Energy signal first:

$$
E = \int_0^\infty (t^4)^2 dt = \int_0^\infty t^8 dt
$$

= $\left[\frac{1}{9}t^9\right]_0^\infty = \left[\frac{1}{9}(\infty)^9 - \frac{1}{9}(0)^9\right] = \infty$

Hence, its Energy is equals to infinity so it is not an energy signal.

Page 4 of 12

Let's solve it for Power signal now:

$$
P = \frac{1}{T} \int_0^\infty (t^4)^2 dt = \frac{1}{T} \int_0^\infty t^8 t
$$

= $\frac{1}{T} \Big[\frac{1}{9} t^9 \Big]_0^\infty = \frac{1}{T} \Big[\frac{1}{9} (\infty)^9 - \frac{1}{9} (0)^9 \Big] = \infty$

Hence, its Power is equals to infinity so it is not power signal.

Q3. Determine which of the following properties hold for the following systems given below:

- 1. Memory less
- 2. Time Invariant
- 3. Linear
- 4. Casual
- 5. Stable
- $y[n] = x[-n]$
- $y[n] = x[n]u[n]$

Solution:

- \bullet $y[n] = x[-n]$
	- 1. Memory less:

Hence, the input signal depends on the past value, so it is not a Memory less system.

2. Time Invariant:

$$
y[n] = x[-n]
$$

Delay the input by 'k' samples and denote the output by y[n,k].

$$
y[n,k] = x[-n-k]
$$

Here n of $x(n)$ has not been replaced by n-k. Here we are delaying $x(n)$ and $x(-n)$ will be delayed by the same amount.

Now delay the output y(n) by k samples.

$$
y[n-k] = x[-(n-k)] = x[-n+k]
$$

Hence, both $y[n, k] \neq y[n - k]$. Thus the system is Time variant.

3. Linear:

Let the system produce $y_1(n)$ and $y_2(n)$ for two separate inputs $x_1(n)$ and $x_2(n)$.

Therefore, $y_1(n) = x_1(-n)$ and $y_2(n) = x_2(-n)$

The response $y_3(n)$ due to linear combination of inputs is given by

$$
y_3(n) = T[a_1x_1(n) + a_2x_2(n)]
$$

= $T\{a_1x_1(n)\} + T\{a_2x_2(n)\}$
= $a_1T\{x_1(n)\} + a_2T\{x_2(n)\}$
= $a_1x_1(-n) + a_2x_2(-n)$
= $a_1y_1(n) + a_2y_2(n)$

The response $y'_3(n)$ of the system due to linear combination of two outputs will be:

$$
y'_{3}(n) = a_{1}y_{1}(n) + a_{2}y_{2}(n)
$$

Hence; $y_3(n) = y'_3(n)$. Therefore the system is linear.

4. Casual

It is non-casual system as if value of $n = -1$ then the system will have the future input

value.

5. Stable

It is stable system as x(n)<∞.

- $y[n] = x[n]u[n]$
	- 1. Memory less:

The output $y(n)$ depends on the present input only. Therefore, the system is static only

i.e; memory less.

2. Time Invariant:

$$
y[n] = x[n]u[n]
$$

Delay the input by 'k' samples and denote the output by y[n,k].

$$
y[n,k] = x[n-k]u[n]
$$

Now delay the output $y(n)$ by k samples.

 $y[n - k] = x[n - k]u[n - k]$

Hence, both $y[n, k] \neq y[n - k]$. Thus the system is Time variant.

3. Linear:

Let the system produce $y_1(n)$ and $y_2(n)$ for two separate inputs $x_1(n)$ and $x_2(n)$.

Therefore, $y_1(n) = x_1(n)u(n)$ and $y_2(n) = x_2(n)u(n)$

The response $y_3(n)$ due to linear combination of inputs is given by

$$
y_3(n) = T[a_1x_1(n) + a_2x_2(n)]
$$

= $T\{a_1x_1(n)\} + T\{a_2x_2(n)\}$
= $a_1T\{x_1(n)\} + a_2T\{x_2(n)\}$
= $[a_1x_1(n) + a_2x_2(n)]u(n)$
= $a_1y_1(n) + a_2y_2(n)$

The response $y'_{3}(n)$ of the system due to linear combination of two outputs will be :

$$
y'_3(n) = a_1y_1(n) + a_2y_2(n) = a_1x_1(n)u(n) + a_2x_2(n)u(n)
$$

Hence; $y_3(n) = y'_3(n)$. Therefore the system is linear.

4. Casual

In the given system the present output depends on the present value of input. So the system is casual.

5. Stable

The output $y(n)$ has bounded value for any value of $x(n)$. Hence the system is stable.

Q4. Draw a block diagram for the following input-output relation:

1.
$$
y[n] = \frac{(2x[n]+x[n-1])}{2}
$$

2.
$$
y[n] = (x[n-1] + 2x[n-2]) \times y[n-1]
$$

3.
$$
y[n] = y[n-1]x[n-1] + 0.5x[n]
$$

4.
$$
y[n] = x[n] + 1.04y[n-1]
$$

Solution:

1.
$$
y[n] = \frac{(2x[n]+x[n-1])}{2}
$$

$$
x(n)
$$
 z^{n} z^{n} z^{n} x x $y(n)$ $y(n)$

3. $y[n] = y[n-1]x[n-1] + 0.5x[n]$

4.
$$
y[n] = x[n] + 1.04y[n-1]
$$

Q5. Graphically convolve the following signals shown below:

(10 Marks)

Solution:

Step2: Choose to flip and slide the signal, e.g., $h(\tau)$. Note: Any signal can be flipped and shifted.

Step3: Now we'll slide our shifted signal and will calculate the overlapping points.

1. $t < 0$:

There is no overlapping so the area under the product of two functions will be zero.

$$
y(0) = \int x(t-\tau) * h(\tau) = 0
$$

Page 10 of 12

2. $0 < t < 1$:

Here part of $h(\tau)$ overlaps with $x(\tau)$ so the area under the product of the function is:

$$
y(t) = \int_0^t 4dt = 4[\tau]_0^t = 4t - 0 \Rightarrow 4t
$$

3. $1 < t < 2$: x(t-τ)*h(τ) 0t-1 1 t 2 1 2

Here part of $h(T)$ overlaps with $x(T)$ so the area under the product of the function is:

$$
y(t) = \int_{t-1}^{1} 4dt + \int_{1}^{t} 2dt = 4[\tau]_{t-1}^{1} + 2[\tau]_{1}^{t} = [4(1) - 4(t-1)] + [(2(t) - 2(1)]
$$

\n
$$
= [4 - 4t + 4] + [2t - 2] = 4 - 4t + 4 + 2t - 2 \Rightarrow 6 - 2t
$$

\n4. 2 < t < 3:
\n
$$
\begin{aligned}\n\mathbf{X}(t-\tau)^{*}h(\tau) \\
2 \\
1\n\end{aligned}
$$
\n
$$
\mathbf{X}(-\tau)^{*}h(\tau)
$$

Here part of $h(T)$ overlaps with $x(T)$ so the area under the product of the function is:

There is no overlapping so the area under the product of two functions will be zero.

$$
y(0) = \int x(t-\tau) * h(\tau) = 0
$$

Step4: Draw the final signal.

$$
y(t) = x(t) * h(t) = \begin{cases} 0 & t < 0 \\ 4t & 0 < t < 1 \\ 6 - 2t & 1 < t < 2 \\ 0 & t > 3 \end{cases}
$$

Page 12 of 12