

Department of Electrical Engineering Program: B.E. (Electrical) Semester - Fall 2016

EL313- Signal & Systems

Quiz – 1 Solution Marks: 10

Handout Date: 26/10/2016

Question # 1:

Determine whether the following signals are energy signal or power signal:

1.
$$x(t) = e^{-5t}u(t)$$

2. $x[n] = \left[\frac{1}{4}\right]^n u[n]$
3. $x(t) = \cos(t) + j\sin(t)$

Solution:

1.
$$x(t) = e^{-5t}u(t)$$

$$E = \int_{-\infty}^{\infty} [x(t)]^2 dt$$
$$= \int_{0}^{\infty} (e^{-5t})^2 dt = \int_{0}^{\infty} e^{-10t} dt = -\frac{e^{-10t}}{10} \Big|_{0}^{\infty}$$
$$= -\frac{e^{-10(\infty)}}{10} + \frac{e^{10(0)}}{10} = \frac{1}{10} < \infty$$

Hence, x(t) is an Energy Signal and its Power is P = 0.

2.
$$x[n] = \left[\frac{1}{4}\right]^n u[n]$$

 $E = \sum_{n=-\infty}^{\infty} |x[n]|^2 = \sum_{n=0}^{\infty} \left|\left(\frac{1}{4}\right)^n\right|^2 = \sum_{n=0}^{\infty} \left|\left(\frac{1}{4}\right)^2\right|^n$
 $= \sum_{n=0}^{\infty} \left(\frac{1}{16}\right)^n$

Applying the geometric series formula:

$$E = \frac{1}{1 - \frac{1}{16}} = \frac{1}{\frac{16 - 1}{16}} \Longrightarrow \frac{16}{15} < \infty$$

Since $0 < E < \infty$, signal x[n] is an energy signal and its P =0.

3.
$$x(t) = \cos(t) + j \sin(t)$$

 $|x(t)|^2 = |\cos(t) + j \sin(t)|^2 = \cos^2(t) + \sin^2(t) \Longrightarrow 1$
 $P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} [x(t)]^2 dt$
 $P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} 1 dt = \lim_{T \to \infty} \frac{1}{2T} [t]_{-T}^{T} = \lim_{T \to \infty} \frac{1}{2T} [T - (-T)]$
 $P = \lim_{T \to \infty} \frac{1}{2T} [2T] \Longrightarrow 1 < \infty$
Since, signal x (t) is a Power signal and its $E = \infty$

Question # 2:

Sketch the following signals:

Solution:

Good Luck