Signal & Systems

Sampling

19th December 16

Signal & Systems: Sampling Button <i>California Computer Compute

Sampling

19th December 16

Signal & Systems: Sampling *Bignal & Systems:* Sampling *Bignal & Sys*

Introduction

- \clubsuit If a signal is band limited i.e., if its Fourier transform is zero outside a finite band of frequencies and if the samples are taken sufficiently close together in relation to the highest frequency present in the signal, then the samples uniquely specify the signal and we can reconstruct it perfectly.
- \clubsuit This result is known as the sampling theorem.
- ❖ Sampling theorem plays a crucial role in modern digital signal processing.
- \clubsuit The theorem concerns about the minimum sampling rate required to convert a continuous time signal to a digital signal, without loss of information.

Analog to Digital Conversion

* The analog to digital (A/D) conversion system is shown below:

- * The basic idea of A/D conversion is to take a continuous time signal and convert it to a discrete-time signal.
- \cdot If the continuous time signal is x(t), we can collect a set of samples multiplying $x(t)$ with an impulse train $p(t)$:

$$
p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)
$$

 \dots Where T is the period of the impulse train.

Analog to Digital Conversion (cont.)

19th December 16

❖ Multiplying x(t) with p(t) yields:

$$
x_p(t) = x(t)p(t)
$$

= $x(t) \sum_{n=-\infty}^{\infty} \delta(t - nT)$
= $\sum_{n=-\infty}^{\infty} x(t)\delta(t - nT)$
= $\sum_{n=-\infty}^{\infty} x(nT)\delta(t - nT)$

 \clubsuit Pictorially, $x_p(t)$ is a set of impulses bounded by the envelop x(t) as shown in the next slide:

Analog to Digital Conversion (cont.)

19th December 16

Signal & Systems: Sampling *Signal & Systems: Sampling By Sadaf Shafquat*

Analog to Digital Conversion (cont.)

19th December 16

- \cdot The output signal $x_p(t)$ represents a set of samples of the signal x(t).
- \cdot Note that $x_p(t)$ is still a continuous time signal.

Frequency Analysis

19th December 16

Signal & Systems: Sampling *Signal & Systems: Sampling By Sadaf Shafquat*

Frequency Analysis of A/D Conversion

19th December 16

- \cdot Let us now consider the Fourier transform of $x_p(t)$.
- $\mathbf{\hat{*}}$ $\mathbf{x}_p(t)$ is the product of $\mathbf{x}(t)$ and $p(t)$, the Fourier transform of $\mathbf{x}_p(t)$ is the convolution of the Fourier transforms $X(j\omega)$ and $P(j\omega)$.
- \clubsuit From the multiplication property we know that:

$$
X_p(j\omega) = \frac{1}{2\pi} \big[X(j\omega) * P(j\omega) \big]
$$

- \triangle The Fourier transform of a periodic impulse train is a periodic impulse train.
- ❖ Specifically,

$$
P(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s)
$$

• Since convolution with an impulse simply shifts a signal i.e., $X(j\omega) *$ $\delta(\omega-\omega_0) = X(j(\omega-\omega_0))$, it follows that:

19th December 16

$$
X_p(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s))
$$

- ❖ Above equation provides the relationship between the Fourier transforms of the input and the output of the impulse train modulator.
- $\hat{\mathbf{v}}$ X_p(jω) is a periodic function of ω consisting of a superposition of shifted replicas of $X(i\omega)$, scaled by $1/T$.
- ❖ Illustrated below:

Signal & Systems: Sampling Button Complime to the complimation of the compli

- *19th December 16*
- \cdot In figure (c) ω_{M} < (ω_s- ω_M), or equivalently ω_{s} > 2ω_M and thus there is no overlap between the shifted replicas of $X(j\omega)$.
- Whereas in figure (d) with $\omega_s > 2\omega_M$, there is overlap.

19th December 16

- \cdot X (jω) is faithfully reproduced at integer multiples of the sampling frequency.
- $\mathbf{\hat{P}}$ If $\omega_{s} > 2\omega_{M}$, x(t) can be recovered exactly from $x_{p}(t)$ by means of a lowass filter with gain T and a cutoff frequency greater than ω_M and less than ω_{s} - ω_{M} as depicted below.

19th December 16

19th December 16

Signal & Systems: Sampling *Signal & Systems: Sampling By Sadaf Shafquat*

19th December 16

❖ If T becomes larger and larger (i.e., we take fewer and fewer samples), we know from the definition of $p(t)$ that the period in time domain between two consecutive impulses increases farther apart.

❖ In frequency domain, since:

$$
P(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)
$$

- \cdot The period $2\pi/T$ reduces.
- ***** In other words, the impulses are more packed in frequency domain when T increases.

19th December 16

❖ Figure below illustrates this idea:

• If we consider $X_p(j\omega)$, which is periodic replicate of $X(j\omega)$ at the impulses given by $P(j\omega)$, we see that the seperation between replicates reduces.

19th December 16

- * When T hits certain limit, the separation becomes zero and beyond the limit, the replicates start to overlap.
- \clubsuit When the frequency replicates overlap, we say that there is aliasing.

- ❖ When T is sufficiently large, there will be overlap between consecutive replicates.
- \clubsuit In order to avoid aliasing T cannot be too large.
- \cdot If we define sampling rate to be:

$$
\omega_s = \frac{2\pi}{T}
$$

19th December 16

 \clubsuit Then smaller T implies higher ω_s. In other words there is a minimum sampling rate such that no aliasing occurs.

Sampling Theorem

19th December 16

Signal & Systems: Sampling *Signal & Systems: Sampling By Sadaf Shafquat*

Sampling Theorem

- Let x(t) be a band limited signal with X (jω) =0 for all $|\omega| > W$.
- Then the minimum sampling rate such that no aliasing occurs in $X_p(j\omega)$ is:

$$
\omega_s > 2W
$$

❖ Where

$$
\omega_s = \frac{2\pi}{T}
$$

Explanation

- \cdot Suppose x(t) has bandwidth W.
- \clubsuit The tightest arrangement that no aliasing occurs is shown below:

- In this case, we see that the sampling rate ω_s is: $\omega_s = 2W$.
- \cdot If T is larger or ω_{ζ} is smaller then $2\pi/T$ becomes less than 2W and aliasing occurs.
- \clubsuit Therefore the minimum sampling rate to ensure no aliasing is:

$$
\omega_s > 2W
$$

Example #1

19th December 16

❖ Suppose there is a signal with maximum frequency 40khz. What is the minimum sampling rate?

❖ Solution:

 \bullet Since, $\omega = 2\pi f$ we know that the max frequency (in rad) is:

$$
\omega = 2\pi \left(40 \times 10^3 \right) \Rightarrow 80 \times 10^3 \pi \left(rad \right)
$$

 \cdot Therefore, the minimum sampling rate is:

$$
2 \times (80 \times 10^3 \pi) = 160 \times 10^3 \pi (rad) \Rightarrow 80kHz
$$

Digital to Analog Conversion

19th December 16

Signal & Systems: Sampling *Butter Standard Signal & Systems: Sampling Butter <i>Butter and Shafquat Butter <i>Butter and Shafquat Butter and All the Sampling and All the Sampling and All the Sampling*

How to recover x (t)?

- \clubsuit If there is no aliasing during the sampling process then we can apply a lowpass filter $H(j\omega)$ to extract the x(t) from $x_p(t)$.
- ❖ As shown in a schematic diagram below:

❖ To see how an ideal lowpass filter can extract x(t) from x_p(t) we first look at the frequency response X_n (jw).

How to recover **x** (t)? (cont.)

19th December 16

 \clubsuit Suppose that $p(t)$ has a period of T. Then,

$$
X_p(j\omega) = \frac{1}{T} \sum_{-\infty}^{\infty} X(j(\omega - k\omega_s))
$$

 \cdot As X_p(jω) is a periodic replicate of X (jω). Since we assume that there is no aliasing, the replicate covering the y-axis is identical to X (jw).

How to recover x (t)? (cont.)

19th December 16

 \cdot That is for $|\omega|$ < $\omega_{\rm s}$ /2,

$$
X_p(j\omega) = X(j\omega)
$$

❖ Now, if we apply an ideal low pass filter:

$$
H(j\omega) = \begin{cases} 1, & |\omega| < \frac{\omega_s}{2} \\ 0, & otherwise \end{cases}
$$

❖ Then:

$$
X_p(j\omega)H(j\omega) = X(j\omega)
$$

 \div For all ω .

❖ Taking the inverse continuous-time Fourier transform we can obtain $x(t)$.

How to recover x (t)? (cont.)

19th December 16

- \cdot If X_p(t) has aliasing, can we still recover x(t) from x_p(t) ?
- ❖ The answer to this question is No.
- \cdot As if aliasing occurs, then the condition X_p (jω) = X(jω) does not hold for all $|\omega| < \omega_{\rm s} / 2$.
- \cdot Consequently, even if we apply the lowpass filter H (jω) to X_p (jω), the result is not $X(j\omega)$.

Thankyou

19th December 16

Signal & Systems: Sampling *Signal & Systems: Sampling By Sadaf Shafquat*