Signal & Systems

Z-Transform-I

21st December 16

Signal & Systems: Z-Transform-I

Z-Transform

21st December 16

Signal & Systems: Z-Transform-I

The Z-Transform

The z-transform of a discrete-time signal x[n] is:

$$X(z) = \sum_{n = -\infty}^{\infty} x(n) z^{-n}$$

The z-transform operation is denoted as:

$$x(n) \xrightarrow{} X(z)$$

Where "z" is the complex number. Therefore, we may write z as:

$$z = re^{j\omega}$$

Where r and ω belongs to Real number. When r=-1, the z-transform of a discrete-time signal becomes:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Therefore, the DTFT is a special case of the z-transform.

The Z-Transform (cont.)

21st December 16

Pictorially, we can view DTFT as the z-transform evaluated on the unit circle:

♦ When $r \neq 1$, the z-transform is equivalent to:

$$X(re^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n](re^{j\omega})^{-n}$$
$$= \sum_{n=-\infty}^{\infty} (r^{-n}x[n])e^{-j\omega n}$$
$$= F[r^{-n}x[n]]$$

Signal & Systems: Z-Transform-I

The Z-Transform (cont.)

- Which is the DTFT of the signal $r^{-n} x[n]$.
- However, we know that the DTFT does not always exist. It exists only when the signal is square summable, or satisfies the Dirichlet conditions.
- Therefore, X(z) does not always converge. It converges only for some values of r. this range of r is called the region of convergence (ROC).

Region of Convergence (ROC)

21st December 16

- The region of convergence are the values of for which the z-transform converges.
- Z-transform is an infinite power series which is not always convergent for all values of z.
- Therefore, the region of convergence should be mentioned along with the z-transformation.
- The Region of Convergence (ROC) of the z-transform is the set of z such that X(z) converges, i.e.,

$$\sum_{n=-\infty}^{\infty} |x[n]| r^{-n} < \infty$$

- Z-transform of right-sided exponential sequences.
- Consider the signal $x[n] = a^n u[n]$. Mathematically it can be written as:

$$x(n) = \begin{cases} a^n & \text{for} \quad n \ge 0\\ 0 & \text{for} \quad n < 0 \end{cases}$$

This sequence exists for positive values of n:

Example #1 (cont.)

The z-transform of x[n] is given by:

$$X(z) = \sum_{-\infty}^{\infty} a^{n} u[n] z^{-n}$$

= $\sum_{n=0}^{\infty} (az^{-1})^{n}$
* Therefore, X(z) converges if $\sum_{n=0}^{\infty} (az^{-1})^{n} < \infty$. From geometric series, we know that:
$$\sum_{n=0}^{\infty} (az^{-1})^{n} = \frac{1}{1 - az^{-1}}$$

* When $|az^{-1}| < 1$, or equivalently $|z| > |a|$. So,
$$X(z) = \frac{1}{1 - az^{-1}}$$

Example #1 (cont.)

• With ROC being the set of z such that |z| > |a|. As shown below:

21st December 16

- Consider the signal x[n] = -aⁿ u[-n -1] with 0 < a <1. Which is the left sided exponential sequence and it can be determined mathematically as:</p> $x(n) = \begin{cases} -a^n u(-n-1) & \text{for } n \le 0 \\ 0 & \text{for } n > 0 \end{cases}$
- This sequence exists only for negative values of n.

Example #2 (cont.)

21st December 16

$$\text{ The z-transform of x[n] is: } X(z) = -\sum_{n=-\infty}^{\infty} a^n u [-n-1] z^{-n}$$
$$= -\sum_{n=-\infty}^{-1} a^n z^{-n}$$
$$= -\sum_{n=1}^{\infty} a^{-n} z^n$$
$$= 1 - \sum_{n=0}^{\infty} \left(a^{-1} z\right)^n$$

★ Therefore, X(z) converges when $|a^{-1}z| < 1$, or equivalently |z| < |a|. In this case: $X(z) = 1 - \frac{1}{z} = \frac{1}{z}$

$$(z) = 1 - \frac{1}{1 - a^{-1}z} = \frac{1}{1 - az^{-1}}$$

Example #2 (cont.)

- Witch ROC being the set of z such that |z| < |a|.
- Note that the z-transform is the same as that of Example 1, the only difference is the ROC. Which is shown below as:

21st December 16

✤ Consider the signal:
$$x[n] = 7\left(\frac{1}{3}\right)^n u[n] - 6\left(\frac{1}{2}\right)^n u[n]$$
♦ The z-transform is:

$$X(z) = \sum_{n=-\infty}^{\infty} \left[7\left(\frac{1}{3}\right)^n - 6\left(\frac{1}{2}\right)^n \right] u[n] z^{-n}$$

$$= 7 \sum_{n=-\infty}^{\infty} \left(\frac{1}{3}\right)^n u[n] z^{-n} - 6 \sum_{n=-\infty}^{\infty} \left(\frac{1}{2}\right)^n u[n] z^{-n}$$
$$= 7 \left(\frac{1}{1 - \frac{1}{3} z^{-1}}\right) - 6 \left(\frac{1}{1 - \frac{1}{2} z^{-1}}\right)$$
$$= \frac{1 - \frac{3}{2} z^{-1}}{\left(1 - \frac{1}{3} z^{-1}\right) \left(1 - \frac{1}{2} z^{-1}\right)}$$

Signal & Systems: Z-Transform-I

Example #3 (cont.)

- For X(z) to converge, both sums in X(z) must converge.
- So we need both |z| > |1/3| and |z| > |1/2|. Thus the ROC is the set of z such that |z| > |1/2|.

Properties of Z-Transform

21st December 16

Signal & Systems: Z-Transform-I

Linearity

21st December 16

♦ This property states that if $x_1(n) \stackrel{z}{\longleftrightarrow} X_1(z)$ and $x_2(n) \stackrel{z}{\longleftrightarrow} X_2(z)$, then

$$a_1 x_1(n) + a_2 x_2(n) \stackrel{z}{\longleftrightarrow} a_1 X_1(z) + a_2 X_2(z)$$

• Where a_1 and a_2 are constants.

Time Scaling

21st December 16

★ This property of z-transform states that if $x(n) \leftarrow X(z)$, then we can write: z

Z.

$$x(n-k) \in Z^{-k}X(z)$$

✤ Where k is an integer which is shift in time in x(n) in samples.

Scaling in Z-Domain

This property states that if:

$$x(n) \stackrel{z}{\longleftrightarrow} X(z) \quad ROC : r_1 < |z| < r_2$$

then $a^n x(n) \stackrel{z}{\longleftrightarrow} X\left(\frac{z}{a}\right) \quad ROC : |a|r_1 < |z| < |a|r_2$

✤ Where a is a constant.

Time Reversal

21st December 16

This property states that if:

$$x(n) \stackrel{\sim}{\longleftrightarrow} X(z) \qquad ROC: r_1 < |z| < r_2$$

Then,

$$x(-n) \stackrel{z}{\longleftrightarrow} X(z^{-1}) \quad ROC : \frac{1}{r_1} < |z| < \frac{1}{r_2}$$

Differentiation in Z-domain

21st December 16

✤ This property states that if $x(n) \stackrel{z}{\longleftrightarrow} X(z)$, then:

$$nx(n) \stackrel{z}{\longleftrightarrow} - z \frac{d\left\{X(z)\right\}}{dz}$$

Convolution

21st December 16

• This property states that if $x_1(n) \stackrel{z}{\longleftrightarrow} X_1(z)$ and $x_2(n) \stackrel{z}{\longleftrightarrow} X_2(z)$ then:

$$x_1(n) * x_2(n) \stackrel{z}{\longleftrightarrow} X_1(z) X_2(z)$$

Find the convolution of sequences:

$$x_1 = \{1, -3, 2\}$$
 and $x_2 = \{1, 2, 1\}$

Solution:

Step 1: Determine z-transform of individual signal sequences:

$$X_{1}(z) = Z[x_{1}(n)] = \sum_{n=0}^{2} x_{1}(n)z^{-n} = x_{1}(0)z^{0} + x_{1}(1)z^{-1} + x_{1}(2)z^{-2}$$

= $1z^{0} - 3z^{-1} + 2z^{-2} = 1 - 3z^{-1} + 2z^{-2}$
and $X_{2}(z) = Z[x_{2}(n)] = \sum_{n=0}^{2} x_{2}(n)z^{-n} = x_{2}(0)z^{0} + x_{2}(1)z^{-1} + x_{2}(2)z^{-2}$
= $1z^{0} + 2z^{-1} + 1z^{-2} = 1 + 2z^{-1} + 1z^{-2}$

Example #4 (cont.)

Step 2: Multiplication of $X_1(z)$ and $X_2(z)$:

$$X(z) = X_1(z)X_2(z) = \left(1 - 3z^{-1} + 2z^{-2}\right)\left(1 + 2z^{-1} + 1z^{-2}\right)$$
$$= 1 - z^{-1} - 3z^{-2} + z^{-3} + 2z^{-4}$$

Step 3: Let us take inverse z-transform of X(z):

$$x(n) = IZT \left[1 - z^{-1} - 3z^{-2} + z^{-3} + 2z^{-4} \right] = \left\{ 1, -1, -3, 1, 2 \right\}$$

Other Properties of Z-Transform

Correlation of Two Sequences:

* This property states that $if_{x_1}(n) \stackrel{\sim}{\leftarrow} X_1(z)$ and $x_2(n) \stackrel{\sim}{\leftarrow} X_2(z)$ then,

$$\sum_{n=-\infty}^{\infty} x_1(n) x_2(n-m) \stackrel{z}{\longleftrightarrow} X_1(z) X_2(z^{-1})$$

Multiplication:

* This property states that if $x_1(n) \stackrel{z}{\longleftrightarrow} X_1(z)$ and $x_2(n) \stackrel{z}{\longleftrightarrow} X_2(z)$ then:

$$x_1(n)x_2(n) \stackrel{z}{\longleftrightarrow} \frac{1}{2\pi j} \oint_c X_1(v)X_2\left(\frac{z}{v}\right) z^{-1} dv$$

Where C is the closed contour which encloses the origin and lies in the ROC that is common to both X1(n) and X1(v) and X2 (1/v).

Conjugate of a Complex sequence:

★ This property of z-transform states that if x(n) is a complex sequence and if x(n) → X(z) then, $x^*(n) \leftarrow [X(z^*)]^*$

Real part of a sequence:

★ This property of z-transform states that if x(n) is a complex sequence and if $x(n) \leftarrow X(z)$

$$\operatorname{Re}[x(n)] \stackrel{\sim}{\longleftrightarrow} \frac{1}{2} [X(z) + X^{*}(z^{*})]$$

Imaginary part of a sequence:

✤ This property of z-transform states that if x(n) is a complex sequence and if $x(n) \stackrel{z}{\leftarrow} X(z)$ then,

$$\operatorname{Im}[x(n)] \stackrel{z}{\longleftrightarrow} \frac{1}{2j} [X(z) - X^{*}(z^{*})]$$

Initial value theorem:

- ★ The initial value theorem foe a single-sided sequence x(n) is x(0) whereas this is x(-∞) for double-sided sequence.
- It is difficult to get this value from the knowledge of one-sided ztransform.
- This theorem states that for a casual sequence x(n), x(0) can be obtained by the knowledge ox X(z) i.e., one-sided of x(z) i.e.,

$$x(0) = \underset{z \to \infty}{\overset{}{\underset{z \to \infty}{\sum}}} X(z)$$

Final value theorem:

☆ The final value theorem states that if a sequence x(n) has finite value as n\∞, called as x(∞), then this value can be determined by the knowledge of its one-sided z-transform i.e.,

$$\underset{n \to \infty}{\underline{LT}} x(n) = x(\infty) \underbrace{LT}_{z \to 1} \left[(z-1)X(z) \right]$$

✤ Partial Sum:

It states that:

$$\sum_{-\infty}^{\infty} x(n) \nleftrightarrow \frac{X(z)}{1 - z^{-1}}$$

Parseval's Theorem:

It states that:

$$\sum_{n=-\infty}^{\infty} x_1(n) x_2^*(n) = \frac{1}{2\pi j} \oint_C X_1(v) X_2^*\left(\frac{1}{v}\right) v^{-1} dv$$

• Where $x_1(n)$ and $x_2(n)$ are complex valued sequences.

✤ Find the initial and final value of x(n) if its z-transform X(z) is given by:

$$X(z) = \frac{0.5z^2}{(z-1)(z^2 - 0.85z + 0.35)}$$

Solution:

$$x(0) = \lim_{z \to \infty} X(z) = \lim_{z \to \infty} \frac{0.5z^2}{(z-1)(z^2 - 0.85z + 0.35)} = \lim_{z \to \infty} \frac{0.5z^2}{(z)(z^2)} = 0$$

The final value or steady value of x(n) is given by:

$$x(\infty) = \lim_{z \to 1} \left[(z-1)X(z) \right] = \frac{0.5}{(1-0.85+0.35)} = 1.0$$

Standard Z-transform Pairs

21st December 16

Signal & Systems: Z-Transform-I

Z-Transform Pairs

TABLE 3.1	SOME COMMON z-TRANSFORM PAIRS			
Sequ	ence	Transform	ROC	
1. δ[n]	1		All z	
2. u[n]	ī	$\frac{1}{-z^{-1}}$	z > 1	
3. −u[−n −	1] ī	$\frac{1}{-z^{-1}}$	z < 1	
4. δ[n − m]	z	-/11	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)	
5. a ⁿ u[n]	ī	$\frac{1}{-az^{-1}}$	z > a	
6. −a ⁿ u[−n	-1] ī	$\frac{1}{-az^{-1}}$	z < a	
		1		

Signal & Systems: Z-Transform-I

Z-Transform Pairs (cont.)

21st December 16

7. na ⁿ u[n]	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
8. $-na^{n}u[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
9. $[\cos \omega_0 n]u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2 \cos \omega_0] z^{-1} + z^{-2}}$	z >1
10. $[\sin \omega_0 n] u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n] u[n]$	$\frac{1 - [r \cos \omega_0] z^{-1}}{1 - [2r \cos \omega_0] z^{-1} + r^2 z^{-2}}$	z > r
12. [r ⁿ sin ω ₀ n]u[n]	$\frac{[r \sin \omega_0] z^{-1}}{1 - [2r \cos \omega_0] z^{-1} + r^2 z^{-2}}$	z > r
13. $\begin{cases} a^n, & 0 \le n \le N-1, \\ 0, & \text{otherwise} \end{cases}$	$\frac{1-a^{N}z^{-N}}{1-az^{-1}}$	z > 0

21st December 16

- ✤ Consider the signal $h[n] = \delta[n] + \delta[n-1] + 2\delta[n-2]$. Find the z-transform of h[n].
- Solution:
 - The z-transform of h[n] is:

$$H(z) = 1 + z^{-1} + 2z^{-2}$$

21st December 16

Consider the signal.

$$x[n] = \left(\frac{1}{3}\right) \sin\left(\frac{\pi}{4}n\right) u[n]$$

Find the Z-Transform.

Thankyou

21st December 16

Signal & Systems: Z-Transform-I