Lecture Notes 23rd December 2016

I In this case the ROC is inside both poles. I-e the points in the ROC all have magnitude smaller than either of the poles at $z = 1308$ $2 = 1/4$ Sconsequently, the ROC for each teem in the partial fraction expansion of example 1 must also be inside the wroesponding pole. M_{out} , $\chi_{1}[n]$ is given by, $x_{1}[n] \stackrel{2}{\leq} \frac{1}{1-\frac{1}{n}2^{-1}}$, $|2| \stackrel{1}{\leq} \frac{1}{4}$ $X_1[n] = -(\frac{1}{4})^n v[-n-1]$, $X_2[n] = -2(1)^n v[-n-1]$ \rightarrow then, $\mathcal{X}[n] = -\left(\frac{1}{4}\right)^n v(-n-1) - 2\left(\frac{1}{3}\right)^n v(-n-1)$ EXAMPLE #3- $X(z) = 4z^2 + 2 + 3z^{-1}$, $0\angle|z| \angle \infty$ $Soc-$ - From the power series definition of the 2-transform, we can determine the enverse transform of x(2) by inspection, $x[n] = 4$, $n=-2$
2
2
3 $n = 0$ $3 \rightarrow 0=1$ O, otherwise That is, $x[n] = 48[n+2] + 28[n]+38[n-1]$ > 2-transform pair 8 (n+no) 3 2° can also be used to simply the above inverse transform EXAMPLE # 4:- $X(z) = \frac{1}{1 - \alpha z^{-1}}$, $|z| > |a|$ Expand in power servies by long division.

Save $Q2| -Q2$ $X(2) = 1$ $1 - 0.2^{1}$ -> By using Long division, $+92^{1}+0^{2}z^{-2}$ -92 ⁻ $+ 02^{-1}$ $Q_2^{-1} - Q_2^2 z^{-2}$ $Q^{2/2-2}$ $a^2z^2 - a^3z^3$ $01,$ $1 = 1 + 02^1 + 0^22^2 + \cdots$ $1 - Q2^{-1}$ The series expansion converges since 121>1al or equivalently 192-121 > By matching terms in power of 2, we see that x[n]=0 n 40, x[0]=1, x[i]=a, x[2]=a and is general x[n]= a "u[n]. EXAMPLE #5:- $H(2) = 1$ $, |2|22$ $1 - 22^{-1}$ $1 - \frac{1}{2}$ 2-1 $p[v]=j$ Roc S_{01} I since the ROC for this system function is the exterior of a circle out side the outermost pole, we know that the impulse besponse is bight sided. > To determine if the system is causal, we then need only check the other condition required for causality, ranely that H(2), when expressed as a ratio of polynomials in 2, has numerator degree no larger than

the deveninator. > For this example: $H(2) = \frac{(-2z^{-1} + 1 - \frac{1}{2}z^{-1})}{(1-\frac{1}{2}z^{-1})(1-2z^{-1})} = \frac{2-\frac{5}{2}z^{-1}}{(1-\frac{1}{2}z^{-1})(1-2z^{-1})}$ $H(z) \Rightarrow \lambda_2^2 - 5/2$ 2 $2^{2} - 5 \times -1$ -The numerator and denominator of H(2) are both of degree two. and consequently we can conclude that the system is causal. -> this can also be verified by calculating the invesse transform $H(z)$ - Using pair 5 in table of standard 2-transform pairs, the empo response of this system is, $h[n] = (\frac{1}{2})^n v[n] + (2)^n v[n].$ -> Since h(n)=0 for nLO, we can confirm that the system is Causal. $Stability -$ -T7 we consider the example #5 for checking stability of the system we see that since the ROC associated is the region 12172 which does not include the unit circle, the system is not stable. EXAMPLE #6: $y[n] - \frac{1}{2}y[n-1] = x[n] + \frac{1}{3}x[n-1]$ Sour -> Applying the 2-transform to both sides and using the linearily property and time shifting property we see that- $1(2) - 12^{-11}(2) = 12 + 12^{-1}1(2)$

$$
Y(2) \left(1-\frac{1}{2}x^{-1}\right) = X(2) \left(1+\frac{1}{2}x^{-1}\right)
$$

\n
$$
H(2) = Y(2) = 1+\frac{1}{2}x^{-1}
$$

\n
$$
Y(2) = 1-\frac{1}{2}x^{-1}
$$

\n
$$
Y(2) = 1-\frac{1}{2}x^{-1}
$$

\n
$$
Y(2) = 1-\frac{1}{2}x^{-1}
$$

\n
$$
Y(2) = 1+\frac{1}{2}x^{-1}
$$

\n
$$
Y(2)
$$

 $ExRMPIE$ # 7. $H(2) = \frac{1-2z^{-1}}{1-\frac{1}{4z}z^{-1}} = \left(\frac{1}{1-\frac{1}{4z}z^{-1}}\right)$ $\left(1 - 2z^{-1}\right)$ Sol: -The above system is the cascade of a system with system function and one with system function (1-22). -> Block digram representation of above system is: $x[n]$ \rightarrow $V(n)$ \rightarrow y(n] 2^{-1} $sin\{-2$ $[n]\omega$ $1/4$ $y[n] = y[n] - 2y[n-1] -$ - As the input to both unit delay elements b v[n], so that the outputs of these elements are identical i-e $w[n] = s[n] = v[n-1]$ -> So we don't need both these delays dements and we can simply we the output of one of them as the signal to be feel to both coefficient multipliers. > Equivalent black diagram representation using only one unit delay element $x[n]$ \rightarrow y(n) 2^{-1}

EXAMPLE #8: $H(z) =$ $(1+\frac{1}{2}z^{-1})(1-\frac{1}{4}z^{-1})$ $1+\frac{1}{4}z^{-1}-1$ $Soc \Rightarrow$ The associated difference equation of $H(2)$ is =
 $y(n) + \frac{1}{4}y(n-1) - \frac{1}{8}y(n-2) = x(n) \Rightarrow 0$ - Since the two system function blucks with system function 2" are unit delay, we have, $f(n) = f(n-1)$ $e(n) = 7(n-1) = 4(n-2)$ I And equity can be rewritten as. $y(n) = -\frac{1}{4}y(n-1) + \frac{1}{8}y(n-2) + x(n)$ $\chi[n]$ \rightarrow y(n) Black diagram representation 2^{-1} for the system H(2). $7(b)$ -145 This form is also known as 2^{-1} Duect from. $l_{e(n)}$ $Y8K$ $\chi[\hat{n}]$ $79(n)$ 2^{-1} Scorade form. 2^{-1} $-1/2$ < $[1/u] \in$

