Signal & Systems

Z-Transform-II

23rd December 16

Properties of ROC

23rd December 16

Properties of ROC

- ***** Property #1: The ROC is a ring or disk in the z-plane center at origin.
- *** Property #2:** The Fourier transform of x|n| converges absolutely if and only if the ROC of the z-transform includes the unit circle.
- **V Property #3:** The ROC contains no poles.
- *** Property #4:** If x|n| is a finite impulse response (FIR), then the ROC is the entire z-plane.
- *** Property #5:** If x|n| is a right-sided sequence then the ROC extends outwards from the outermost finite pole to infinity.
- ***** Property #6: If x|n| is left sided then the ROC extends inward from the innermost nonzero pole to $z=0$.
- **→ <u>Property #7:</u>** If X(z) is rational, i.e., X(z)=A(z) / B(z) where A(z) and B(z) are polynomials, and if $x[n]$ is right-sided, then the ROC is the region outside the outermost pole.

Inverse z-Transform

23rd December 16

Inverse Z-Transform

- \cdot The inverse z-transform is used to derive x[n] from X(z).
- \cdot There are different methods with which we can derive x[n] if X(z) is given.
- ***** By considering r fixed, inverse of z-transform can be obtained from inverse of Fourier transform. That is :

$$
X(re^{j\omega}) = F\left\{x[n]r^{-n}\right\}
$$

 \clubsuit For any value of r so that z=re^{jω} is inside the ROC.

or

❖ Applying the inverse Fourier transform to both sides of above equation yields:

$$
x[n]r^{-n} = F^{-1}\left\{X\left(re^{j\omega}\right)\right\}
$$

$$
x[n] = r^n F^{-1} \left\{ X \left(r e^{j\omega} \right) \right\}
$$

Signal & Systems: Z-Transform-II By Sadaf Shafquat

Inverse Z-Transform (cont.)

- ❖ Using the inverse Fourier transform expression in above equation we have: $x[n] = r^n \frac{1}{2}$ 2π $X\!\left(r e^{j\omega}\right)\!e^{j\omega n}\,d\omega$ ∫
- ◆ Or moving the exponential factor rⁿ inside the integral and combining it with the term $e^{j\omega n}$:

 2π

$$
x[n] = \frac{1}{2\pi} \int_{2\pi}^{\infty} X(re^{j\omega}) (re^{j\omega})^n d\omega
$$

- ❖ That is we can recover x[n] from its z-transform evaluated along a contour z=re^{jω} in the ROC with r fixed and ω varying over a 2π interval.
- \cdot Consequently in terms of an integration in the z-plane above equation becomes: 1

$$
x[n] = \frac{1}{2\pi j} \oint X(z) z^{n-1} dz
$$

Inverse Z-Transform (cont.)

23rd December 16

- ❖ Methods to obtain Inverse Z-transform:
	- \cdot If X(z) is rational, we can use expanding the rational algebraic into a linear combination of lower order terms and then one may use:

 \cdot If ROC is out of pole $z = a_i$:

$$
X(z) = \frac{A_i}{1 - a_i z^{-1}} \to x[n] = A_i a_i u[n]
$$

 \cdot If ROC is inside of $z = a_i$:

$$
X(z) = \frac{A_i}{1 - a_i z^{-1}} \to x[n] = -A_i a_i u[-n-1]
$$

V Do not forget to consider ROC in obtaining inverse of ZT.

- \cdot If X(z) is non-rational, use Power series expansion of X(z), then apply δ [n+n₀] \leftarrow \rightarrow zⁿ⁰
- \cdot If X(z) is rational, power series can be obtained by long division.

Inverse Z-Transform (cont.)

23rd December 16

- \cdot If X(z) is a rational function of z, i.e., a ratio of polynomials, we can also use partial fraction expansion to express $X(z)$ as a sum of simple terms for which the inverse transform may be recognized by inspection.
- ❖ The ROC plays a critical role in this process.

❖ Consider the z-transform:

- \cdot Let us consider the same $X(z)$ as used in Example #1 but now with the ROC $|z| < \frac{1}{4}$.
- $\mathbf{\hat{v}}$ That is:

❖ Consider the z-transform:

$$
X(z) = 4z^2 + 2 + 3z^{-1}, 0 < |z| < \infty
$$

23rd December 16

❖ Consider:

$$
X(z) = \frac{1}{1 - az^{-1}}, |z| > |a|
$$

❖ Expand in a power series by long division.

Analysis & Characterization of LTI Systems

23rd December 16

LTI Systems Using z-Transforms

- ❖ The z-transform plays a particularly important role in the analysis and representation of discrete time LTI system.
- $\mathbf{\hat{P}}$ From the convolution property: $Y(z) = H(z) X(z)$.
- \clubsuit Where X(z), Y(z) and H(z) are the z-transforms of the system input, output and impulse response respectively.
- \cdot H(z) is referred to as the system function or transfer function of the system.
- * For z-evaluated on the unit circle (i.e., $z = e^{j\omega}$), H(z) reduces to the frequency response of the system, provided that the unit circle is in the ROC for $H(z)$.
- * We know that if the input to an LTI system is the complex exponential $x[n] = z^n$, then the output will be H(z) z^n .
- ❖ That is zⁿ is an Eigen-function of the system with eigenvalue given by $H(z)$, the z-transform of the impulse response.

LTI Systems Using z-Transforms (cont.) *23rd December 16*

- ❖ Many properties of a system can be tied directly to characteristics of the poles, zeros, and region of convergence of the system function.
- \cdot Lets discuss few of the system properties of z-transform, that is:
	- **V** Causality
	- **❖ Stability**

Causality

- ❖ A discrete-time LTI system is causal if and only if ROC is the exterior of a circle (including ∞).
- $\mathbf{\hat{v}}$ Proof:
- ❖ A system is causal if and only if: $h[n] = 0$, n<0.
- ❖ Therefore, h[n] must be right sided. Property 5 implies that ROC is outside a circle.
- ❖ Also, by the definition that:

$$
H(z) = \sum_{n=0}^{\infty} h[n] z^{-n}
$$

- Where there is no positive powers of z, $H(z)$ converges also when zè∞.
- \div |z|>1 when $z\rightarrow\infty$.

Stability

- \clubsuit A discrete time LTI system is stable if and only if ROC of H(z) includes the unit circle.
- ❖ Proof: A system is stable if and only if h[n] is absolutely summable, if and only if DTFT of $h[n]$ exists. Consequently by property 2, ROC of $H(z)$ must include the unit circle.
- ❖ A causal discrete-time LTI system is stable if and only if all of its poles are inside the unit circle.

Examples **Examples**

❖ Consider a system with system function:

$$
H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{1}{1 - 2z^{-1}}, |z| > 2
$$

- ❖ Whether the system is Causal or not?
- $\hat{\mathbf{v}}$ Find h[n]=?.

LTI Systems Characterized by LCCDE *23rd December 16*

❖ For systems characterized by liner constant-coefficient difference equations, the properties of the z-transform provide a particularly convenient procedure for obtaining the system function, function response or time domain response of the system.

23rd December 16

❖ Consider an LTI system for which the input x[n] and the output y[n] satisfy the linear constant coefficient difference equation:

$$
y[n] - \frac{1}{2}y[n-1] = x[n] + \frac{1}{3}x[n-1]
$$

System Functions for Interconnections of LTI Systems *23rd December 16*

- ❖ The system function for the cascade of two discrete-time LTI systems is the product of the system functions for the individual systems in the cascade.
- ❖ Feedback interconnection of two systems is shown below:

- \cdot It is involved to determine the difference equation or impulse response for the overall system working directly in the time domain.
- ❖ However with the systems and sequences expressed in terms of their z-transforms, the analysis involves only algebraic equations.

System Functions for Interconnections of LTI Systems **Systems** *23rd December 16*

$$
Y(z) = Y_1(z) = X_2(z)
$$

\n
$$
X_1(z) = X(z) - Y_2(z) = X(z) - H_2(z)Y(z)
$$

\n
$$
Y(z) = H_1(z)X_1(z) = H_1(z)[X(z) - H_2(z)Y(z)]
$$

\n
$$
\frac{Y(z)}{X(z)} = H(z) = \frac{H_1(z)}{1 + H_2(z)H_1(z)}
$$

***** ROC is determined based on roots of $1+H_2(z)H_1(z)$.

Block Diagram Representation for Causal LTI System 23rd December 16

- ❖ Causal LTI systems can be described by difference equations using block diagram involving three basic operations:
	- ❖ Addition
	- \clubsuit Multiplication by a coefficient
	- ❖ A unit delay

23rd December 16

❖ Consider the causal LTI system with system function:

$$
H(z) = \frac{1 - 2z^{-1}}{1 - \frac{1}{4}z^{-1}} = \left(\frac{1}{1 - \frac{1}{4}z^{-1}}\right)\left(1 - 2z^{-1}\right)
$$

❖ Consider the causal LTI system with system function:

$$
H(z) = \frac{1}{\left(1 + \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{4}z^{-1}\right)} = \frac{1}{1 + \frac{1}{4}z^{-1} - \frac{1}{8}z^{-2}}
$$

Problems

23rd December 16

❖ Consider the signal:

$$
x[n] = \left(\frac{1}{5}\right)^n u[n-3]
$$

❖ Evaluate the z-transform of this signal and specify the corresponding region of convergence.

❖ Consider the signal:

$$
x[n] = \begin{cases} \left(\frac{1}{3}\right)^n \cos\left(\frac{\pi}{4}n\right), & n \le 0\\ 0, & n > 0 \end{cases}
$$

 \cdot Determine the poles and ROC for X(z).

 \cdot Let x[n] be a signal whose rational z-transform X(z) contains a pole at $z=1/2$. given that:

$$
x_1[n] = \left(\frac{1}{4}\right)^n x[n]
$$

❖ Is absolutely summable and

$$
x_2[n] = \left(\frac{1}{8}\right)^n x[n]
$$

 \cdot Is not absolutely summable, determine whether x[n] is left sided, right sided or two sided.

23rd December 16

 \clubsuit Using partial fraction expansion and the fact that:

$$
a^n u[n] \leftrightarrow \frac{1}{1 - az^{-1}}, |z| > |a|
$$

 \cdot Find the inverse z-transform of:

$$
X(z) = \frac{1 - \frac{1}{3}z^{-1}}{\left(1 - z^{-1}\right)\left(1 + 2z^{-1}\right)}, |z| > 2
$$

❖ Determine the z-transform for each of the following sequences. Sketch the pole-zero plot and indicate the ROC:

$$
(a): \delta[n-5]
$$

\n
$$
(b): 2^{n}u[-n] + \left(\frac{1}{4}\right)^{n}u[n-1]
$$

\n
$$
(c): |n|\left(\frac{1}{2}\right)^{|n|}
$$

 \clubsuit (a): Determine the system function for the causal LTI system with difference equation:

$$
y[n] - \frac{1}{2}y[n-1] + \frac{1}{4}y[n-2] = x[n]
$$

 \clubsuit (b): Using z-transforms, determine y[n] if:

$$
x[n] = \left(\frac{1}{2}\right)^n u[n]
$$

Thankyou

23rd December 16