Course Title: Signal & Systems

Course Code: EL-313

(03 Marks)

MID SEMESTER EXAMINATION – Fall 2016 Program: B.E. (Electrical)

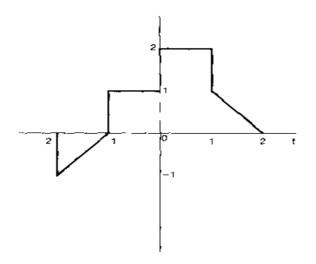
Solution

SECTION-II: 24 MARKS

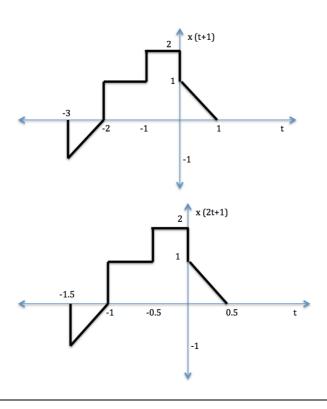
Time Allowed: 1hr 10 min

Attempt all questions. Marks are mentioned against the questions. Note: Please attach the question paper at the end of the answer sheet.

Q1. A continuous-time signal x (t) is shown in figure below. Sketch and label the signal x(2t + 1):



Solution:



Q2. Determine whether or not each of the following signals is periodic. If a signal is periodic, specify its fundamental period:

$$x[n] = 1 + e^{\frac{j4\pi n}{7}} - e^{\frac{j2\pi n}{5}}$$

(03 Marks)

Solution:

Step #1: Determine the fundamental period of individual signals. Period of the first term in the RHS $N_1 = 1$ Period for the second term in the RHS is:

 $\frac{\frac{N}{m}}{\frac{m}{m}} = \frac{2\pi}{\omega_0}, \text{ where } \omega_0 = \frac{4\pi}{7}$ $\frac{\frac{N}{m}}{\frac{N}{m}} = \frac{2\pi}{\frac{4\pi}{7}} \Longrightarrow \frac{7}{2}$

Where $N_2 = 7$ and m = 2.

Period for the third term in the RHS is:

$$\frac{N}{m} = \frac{2\pi}{\omega_0}, \text{ where } \omega_0 = \frac{2\pi}{5}$$
$$\frac{N}{m} = \frac{2\pi}{\frac{2\pi}{5}} \Longrightarrow 5$$

Where $N_3 = 5$ and m = 1.

Step #2: Find the ratio of fundamental period of 1st signal to fundamental period of every other signal.

$$\frac{N_1}{N_2} \Longrightarrow \frac{1}{7} , \frac{N_1}{N_3} \Longrightarrow \frac{1}{5}$$

Step #3: If the ratios are rational, the composite signal is periodic. Hence above two ratios are rational so the signal x [n] is periodic.

Step #4: $N_0 = LCM(N_1, N_2, N_3)$

$LCM = 1 \times 7 \times 5 \implies 35$

Therefore, the overall signal x [n] is periodic with a period which is least common multiple of the period of the three terms in x [n]. This is equal to 35.

Q3. Determine whether the following signals are energy signal or power signal:

i. $x(t) = e^{-t}u(t)$ ii. $x(t) = \cos(t) + i\sin(t)$

(03 Marks)

Solution:

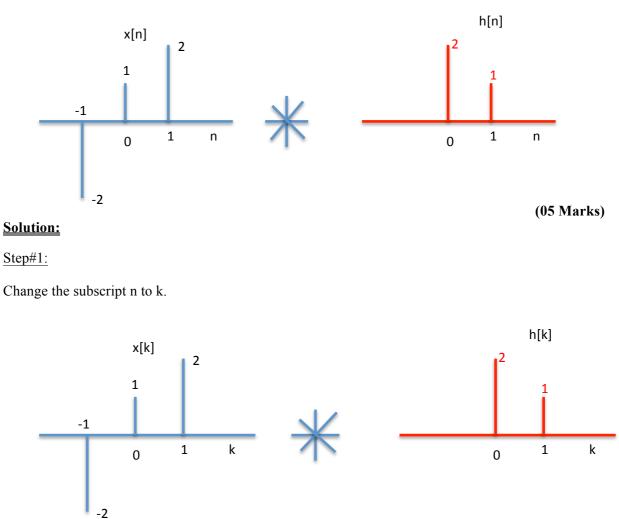
i.
$$x(t) = e^{-t}u(t)$$

 $E = \int_{-\infty}^{\infty} [x(t)]^2 dt$
 $= \int_{0}^{\infty} (e^{-t})^2 dt = \int_{0}^{\infty} e^{-2t} dt = -\frac{e^{-2t}}{2} \Big|_{0}^{\infty}$
 $= -\frac{e^{-2(\infty)}}{2} + \frac{e^{2(0)}}{2} = \frac{1}{2} < \infty$

ii. $x(t) = \cos(t) + j \sin(t)$ $|x(t)|^2 = |\cos(t) + j \sin(t)|^2 = \cos^2(t) + \sin^2(t) \Rightarrow 1$ $P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} [x(t)]^2 dt$ $P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} 1 dt = \lim_{T \to \infty} \frac{1}{2T} [t]_{-T}^{T} = \lim_{T \to \infty} \frac{1}{2T} [T - (-T)]$ $P = \lim_{T \to \infty} \frac{1}{2T} [2T] \Rightarrow 1 < \infty$

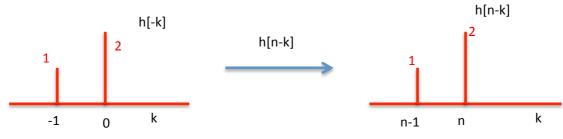
Since, signal x (t) is a Power signal and its $E = \infty$.

Q4. Determine the discrete-time convolution of x [n] and h [n] for the following case:



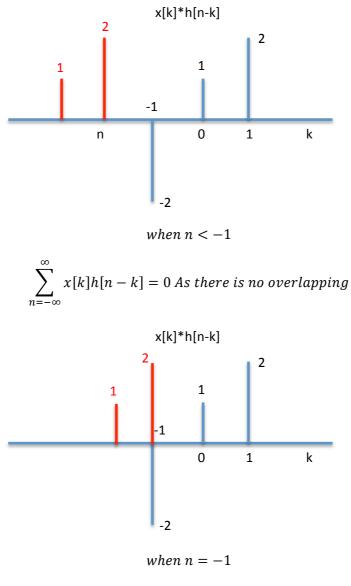
<u>Step#2:</u>

Flip and shift anyone of the signal. Here we are flipping and shifting h[k].

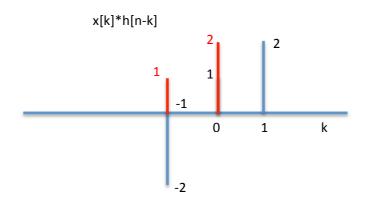


<u>Step#3:</u>

Start sliding h [n-k] over the signal x [k] and convolve.

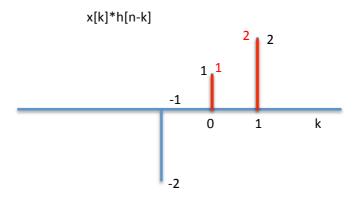


$$y[-1] = \sum_{n=-\infty}^{\infty} x[k]h[n-k] = 2 \times (-2) \Longrightarrow -4$$



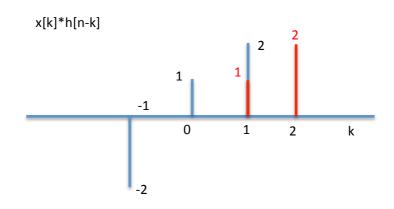
when n = 0

$$y[0] = \sum_{n=-\infty}^{\infty} x[k]h[n-k] = 1 \times (-2) + (2 \times 1) = -2 + 2 \Longrightarrow 0$$

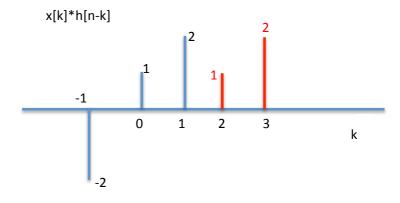


when
$$n = 1$$

$$y[1] = \sum_{n=-\infty}^{\infty} x[k]h[n-k] = 2 \times (2) + (1 \times 1) = 4 + 1 \Longrightarrow 5$$



$$y[2] = \sum_{n=-\infty}^{\infty} x[k]h[n-k] = 2 \times (0) + (1 \times 2) = 0 + 2 \Longrightarrow 2$$

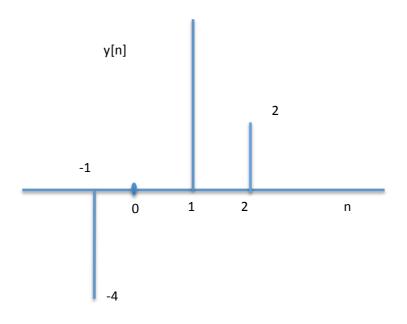


when
$$n = 3$$

$$y[3] = \sum_{n=-\infty}^{\infty} x[k]h[n-k] = 0$$
 As there is no overlapping

Step#4:

Sketch the final signal.



Q5. Find the Fourier series coefficients for each of the following signals:

i.
$$x(t) = \sin\left(10\pi t + \frac{\pi}{6}\right)$$

ii. $x(t) = 1 + \cos(2\pi t)$

Solution:

i.
$$x(t) = \sin\left(10\pi t + \frac{\pi}{6}\right)$$

$$x(t) = \sin\left(10\pi t + \frac{\pi}{6}\right)$$

Using Euler's identity:

(05 Marks)

$$x(t) = \frac{e^{j\pi/6}}{2j}e^{j2\pi t5} - \frac{e^{-j\pi/6}}{2j}e^{-j2\pi t5}$$

The fundamental frequency, $\omega_0 = 2\pi$.

$$x(t) = \sum_{k} a_k e^{jk\omega_0 t}$$

Where, by inspection:

$$a_5 = rac{e^{j\pi/6}}{2j}$$
 , $a_{-5} = rac{-e^{-j\pi/6}}{2j}$

Otherwise $a_k = 0$.

ii. $x(t) = 1 + \cos(2\pi t)$

$$x(t) = 1 + \cos(2\pi t)$$

Using Euler's identity:

$$x(t) = 1 + \frac{e^{j2\pi t}}{2} + \frac{e^{-j2\pi t}}{2}$$

The fundamental frequency, $\omega_0 = 2\pi$.

$$x(t) = \sum_{k} a_k e^{jk\omega_0 t}$$

Where, by inspection:

$$a_{-1} = a_1 = \frac{1}{2} \& a_0 = 1$$

Otherwise $a_k = 0$.

Q6. Convolve the signal x (t) and h (t) and find out its output y (t). Where:

$$x(t) = e^{-at} u(t)$$
$$h(t) = e^{-bt} u(t)$$

Where $b \neq a$.

Solution:

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

(05 Marks)

$$y(t) = \int_{-\infty}^{\infty} e^{-a\tau} u(\tau) e^{-b(t-\tau)} u(t-\tau) d\tau = \int_{-\infty}^{\infty} e^{-a\tau} e^{-bt} e^{b\tau} u(\tau) u(t-\tau) d\tau$$
$$= e^{-bt} \int_{0}^{t} e^{-a\tau} e^{b\tau} d\tau , t > 0$$
$$= e^{-bt} \int_{0}^{t} e^{b\tau-a\tau} d\tau = e^{-bt} \int_{0}^{t} e^{(-a+b)\tau} d\tau$$
$$= e^{-bt} \left[\frac{e^{(-a+b)\tau}}{-a+b} \right]_{0}^{t} = e^{-bt} \left[\frac{e^{(-a+b)\tau}}{-a+b} - \frac{e^{(-a+b)0}}{-a+b} \right]$$
$$= e^{-bt} \left[\frac{e^{(-a+b)t}}{-a+b} - \frac{e^{0}}{-a+b} \right] = e^{-bt} \left[\frac{e^{-at}e^{bt}}{-a+b} - \frac{1}{-a+b} \right]$$
$$= \frac{e^{-at}e^{bt}e^{-bt}}{-a+b} - \frac{e^{-bt}}{-a+b} = \frac{e^{-at}e^{bt-bt} - e^{-bt}}{-a+b} = \frac{e^{-at}e^{0} - e^{-bt}}{-a+b}$$
$$y(t) = \frac{e^{-at} - e^{-bt}}{b-a} u(t)$$

When t < 0 then y (t)=0.

Formula Sheet

S. No.	Continuous-Time	Discrete-Time
1.	$Frequency: f = \frac{1}{T}$ $Angular Frequency: \omega = 2\pi f = \frac{2\pi}{T}$ $Fundamental Period: T = \frac{2\pi}{\omega}$	Angular Frequency : $\omega = \frac{2\pi k}{N}$ Fundamental Period : $\frac{N}{k} = \frac{2\pi}{\omega}$
	$Energy: E = \int_{-\infty}^{\infty} [x(t)]^2 dt$	$Energy: E = \sum_{n=-\infty}^{\infty} x[n] ^2$
2.	Power : $P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} [x(t)]^2 dt$ If x (t) is periodic, then its average power becomes: $P = \frac{1}{T} \int_{0}^{T} [x(t)]^2 dt$	Power: $P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x[n] ^2$
3.	Convolution Integral $y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$	Convolution Sum $y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$
4.	Fourier Series $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} , Synthesis Equation$	Fourier Series $x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\omega_0 n} , Synthesis Equation$
	$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$, Analysis Equation	$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n}$, Analysis Equation