Signal & Systems Lecture #1

 6^{th} March 18

Engr. Sadaf Sufwan

Sadaf.malik88@gmail.com www.Sadafsufwan.com

Course Assessment

- + Total assessment 100 %
 - + Midterm : 30%
 - + Final Exam : 50%
 - + Internal Evaluation : 20%
- + Internal Evaluation 20%
 - + Quizzes : 10%
 - + Assignment : 10%

Internal Evaluation Details

Total Quizzes 5 Total Assignments 5
Best of 4 Quizzes Best of 4 Assignments
Semester Project will be conducted in the form of groups.
Evaluation will be equal to 1 quiz and 1 assignment
Total 5 Quizzes Total 5 Assignments

Course Book

+ Signal & Systems, By Alan V. Oppenheim, Alan S. Willsky with S.Hamid Nawab

Introduction

What is a Signal?

- + If a function represents a physical quantity or variable containing information about the behavior and nature of the phenomenon.
- + Signals are functions of one or more variables.

Examples of Signals

+ Examples of signals include:

- + A Voltage signal: voltage across two points varying as a function of time.
- + A photograph: color and intensity as a function of 2dimensional space.
- + A Video Signal: color an intensity as a function of 2-dimensional space and time.

What is a System?

 Systems are operator that accept a given signal (the input) and produces a new signal (the output).

+ Systems respond to an input signal by producing an output signal.

Examples of Systems

+ Examples of system includes:

- + An Oscilloscope: takes in a voltage signal, outputs a 2dimensional image characteristic of the voltage signal.
- + A computer monitor: inputs voltage pulses from the CPU and outputs a time varying display.
- + A capacitance: terminal voltage signal may be looked at as the input, current signal as the output.

Classification of Signals

Classification

+ Two main broad classification of signals are:

- + Continuous time signal
- + Discrete time signal

Continuous Time Signals

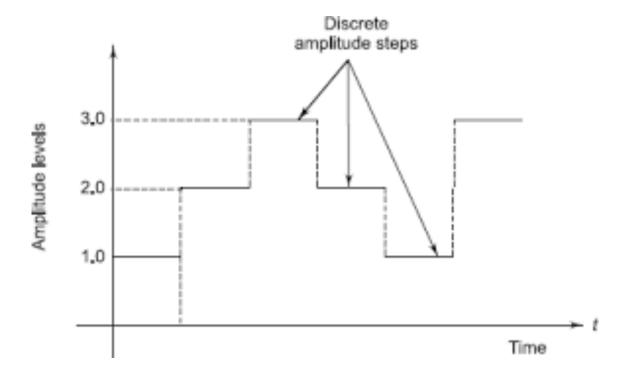
- + Is is an infinite and uncountable set of numbers.
- There are infinite possible values from the time t and instantaneous amplitude x(t) between start and end point.
- + If a signal at all values of t is a countinous variable:

Exponential

- Function
- + This signal is continuous in time as well as in amplitude.
 - + Another example is Sinusoidal Signal.

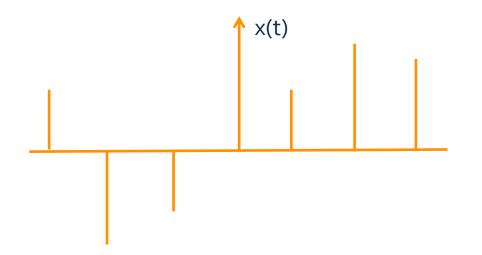
Continuous Time Signals (cont.)

+ The signal shown below is continuous in time but discrete in amplitude.



Discrete Time Signals

- The number of elements in the set as well as possible values of each element is finite and countable.
- + It can be represented with computer bits and stored on a digital storage medium.



Basic Operations

Elementary Operations on Signals

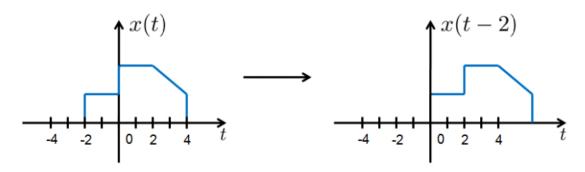
- There are several basic operation by which new signals are formed from given signals:
 - + Amplitude Scale: $\mathcal{V}(t) = \alpha x(t)$, where a is a real (or possibly complex) constant.
 - + Amplitude Shift: $\mathcal{Y}(t) = x(t) + b$, where b is a real = (or possibly complex) constant
 - + Addition: $\mathcal{Y}(t) = x(t) + z(t)$
 - + Multiplication: y(t) = x(t)z(t)

Time Shift

+ For any $t_0 \in R$ and $n_0 \in Z$ time shift is an operation defined as: $x(t) \rightarrow x(t - t_0)$ $x[n] \rightarrow x[n - n_0]$

+ If $t_o > o$, the time shift is known as "delay".

- + If $t_o < o$, the time shift is known as "advance".
- + For example:

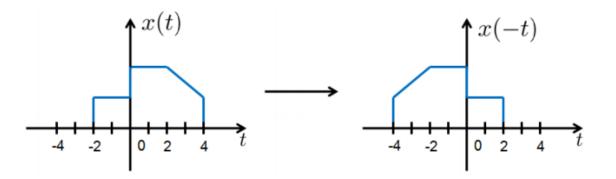


Time Reversal

+ Time reversal if defined as: $x(t) \rightarrow x(-t)$ $x[n] \rightarrow x[-n]$

+ Which can be interpreted as the "flip over the y-axis".

+ For example:

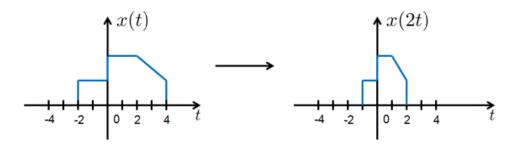


Time Scaling

 Time scaling is the operation where the time variable t is multiplied by a constant a:

$$x(t) \rightarrow x(at), \quad a > 0$$

- If a > 1, the time scale of the resultant signal is "decimated" (speed up).
- If o < a < 1, the time scale of the resultant signal is "expanded" (slowed down).
- + For example:



Combination of Operations

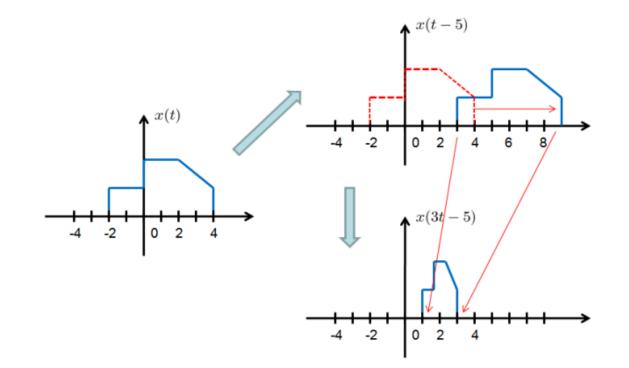
+ Linear operation in time on a signal x(t) can be expressed as: $y(t) = x(at-b), a, b \in R$

+ There are two methods to describe the output signal:

- + Method A: "shift, then scale"
 - Define v(t)= x(t-b)
 - + Define y(t) = v(at) = x(at-b)
- + Method B: "Scale, then shift"
 - Define v(t) = x(at)
 - + Define y(t) = x(t-b/a) = x(at-b)

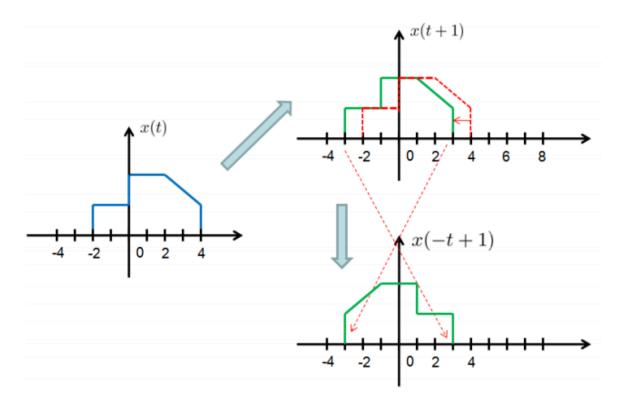
Combination of Operations (cont.)

+ Example 1:



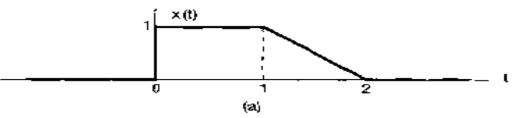
Combination of Operations (cont.)

+ Example 2:



Example #1

+ Given the signal x(t) as shown below:



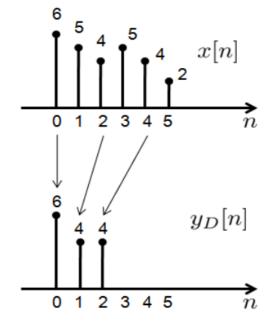
+ (a): Draw the signal x(t+1)

- + (b): Draw the signal x(-t+1) obtained by a time shift and a time reversal.
- + (c): Draw the time scaled signal x(3/2t)
- + (d): Draw the signal x (3/2t+1) obtained by a time shift and scaling.

Decimation & Expansion

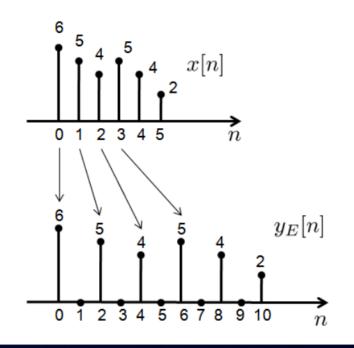
Decimation

- + Decimation is defined as: $y_D[n] = x[Mn]$
- + For some integers M. M is called the decimation factor.
- + When M=2.



Expansion

- + Expansion is defined as: $y_E[n] = \begin{cases} x[\frac{n}{L}], & n = \text{int eger multiple of } L \\ 0, & otherwise \end{cases}$
- ✤ L is called the expansion factor.
- ♦ When L=2.



Classification of Signals

Periodic vs Aperiodic

 Definition-1: A continuous time signal x(t) is periodic if there is a constant T > o such that:

$$x(t) = x(t+T), \quad for \quad all \quad t \in R$$

 Definition-2: A discrete time signal x[n] is periodic if there is an integer constant N > o such that:

$$x[n] = x[n+N], \quad for \quad all \quad n \in \mathbb{Z}$$

- Signals do not satisfy the periodicity conditions are called aperiodic signals.
- + T_o is called the fundamental period of x(t) if it is the smallest value of T >o satisfying the periodicity condition. The number $\omega_0 = \frac{2\pi}{T_0}$ is called the fundamental frequency of x(t).

Periodic vs Aperiodic (cont.)

+ N_o is called the fundamental period of x[n] if it is smallest value of N > o where N ε Z satisfying the periodicity condition. The number $\frac{\Omega_0}{2\pi} = \frac{m}{N}$ is called the fundamental frequency of x[n].

Example #2

+ Determine the fundamental period of the following signals:

(*a*):
$$e^{j3\pi t/5}$$

(b):
$$e^{j3\pi n/5}$$

Even & Odd Signals

- + An even signal is any signal f such that f(t) = f(-t).
- A signal x(t) or x[n] is referred to as an even signal if it is identical to its time-reversed counterpart, i.e., with its reflection about the origin.
- An odd signal on the other hand is a signal f such that f(t) = -(f(-t)).
- + Any signal can be written as a combination of an even and odd signal, i.e., every signal has an odd-even decomposition.

$$f(t) = \frac{1}{2} (f(t) + f(-t)) + \frac{1}{2} (f(t) - f(-t))$$

Even & Odd Signals (cont.)

The all-zero signal is both even and odd. Any other signal cannot be both even and odd, but may be neither.

Thank You