Signal & Systems Lecture #1

6th March 18

Engr. Sadaf Sufwan

Sadaf.malik88@gmail.com www.Sadafsufwan.com

Course Assessment

- $+$ Total assessment 100 %
	- $+$ Midterm : 30%
	- \pm Final Exam : 50%
	- \pm Internal Evaluation : 20%
- $+$ Internal Evaluation 20%
	- \pm Quizzes : 10%
	- **+** Assignment : 10%

Internal Evaluation Details

- **+** Total Quizzes 5 Total Assignments 5 Best of 4 Quizzes Best of 4 Assignments \div Semester Project will be conducted in the form of groups.
	- \pm Evaluation will be equal to 1 quiz and 1 assignment

Total 5 Quizzes Total 5 Assignments

Course Book

+ Signal & Systems, By Alan V. Oppenheim, Alan S. Willsky with S.Hamid Nawab

Introduction

What is a Signal?

- \pm If a function represents a physical quantity or variable containing information about the behavior and nature of the phenomenon.
- \div Signals are functions of one or more variables.

Examples of Signals

\pm Examples of signals include:

- \div **A Voltage signal**: voltage across two points varying as a function of time.
- \div **A** photograph: color and intensity as a function of 2dimensional space.
- \div **A Video Signal**: color an intensity as a function of 2-dimensional space and time.

What is a System?

 \div Systems are operator that accept a given signal (the input) and produces a new signal (the output).

 \div Systems respond to an input signal by producing an output signal.

Examples of Systems

\div Examples of system includes:

- \div **An Oscilloscope:** takes in a voltage signal, outputs a 2dimensional image characteristic of the voltage signal.
- \div **A computer monitor:** inputs voltage pulses from the CPU and outputs a time varying display.
- \div **A capacitance:** terminal voltage signal may be looked at as the input, current signal as the output.

Classification of Signals

Classification

 \pm Two main broad classification of signals are:

- \pm Continuous time signal
- \div Discrete time signal

Continuous Time Signals

- \pm Is is an infinite and uncountable set of numbers.
- $+$ There are infinite possible values from the time t and instantaneous amplitude x(t) between start and end point.
- \pm If a signal at all values of t is a countinous variable:

Exponential

- Function
- $+$ This signal is continuous in time as well as in amplitude.
	- + Another example is Sinusoidal Signal.

Continuous Time Signals (cont.)

 $+$ The signal shown below is continuous in time but discrete in amplitude.

Discrete Time Signals

- $+$ The number of elements in the set as well as possible values of each element is finite and countable.
- + It can be represented with computer bits and stored on a digital storage medium.

Basic Operations

Elementary Operations on Signals

- \pm There are several basic operation by which new signals are formed from given signals:
	- \rightarrow Amplitude Scale: $y(t) = ax(t)$, where a is a real (or possibly complex) constant.
	- \rightarrow Amplitude Shift: $y(t) = x(t) + b$, where b is a real = (or possibly complex) constant
	- \rightarrow Addition: $y(t) = x(t) + z(t)$
	- \rightarrow Multiplication: $y(t) = x(t)z(t)$

Time Shift

+ For any $t_0 \in R$ and $n_0 \in Z$ time shift is an operation defined as: $x(t) \rightarrow x(t-t_0)$ $x[n] \rightarrow x[n-n_0]$

 $+$ If t_o > o, the time shift is known as "delay".

- \pm If t_o < o, the time shift is known as "advance".
- $+$ For example:

Time Reversal

+ Time reversal if defined as:

$$
x(t) \to x(-t)
$$

$$
x[n] \to x[-n]
$$

+ Which can be interpreted as the "flip over the y-axis".

 $+$ For example:

Time Scaling

 \pm Time scaling is the operation where the time variable t is multiplied by a constant a:

$$
x(t) \to x(at), \quad a > 0
$$

- \pm If a > 1, the time scale of the resultant signal is "decimated" (speed up).
- \pm If o < a < 1, the time scale of the resultant signal is "expanded" (slowed down).
- $+$ For example:

Combination of Operations

 \div Linear operation in time on a signal $x(t)$ can be expressed as: $y(t) = x(at-b), a,b \in R$

 \pm There are two methods to describe the output signal:

- \div Method A: "shift, then scale"
	- \div Define v(t)= $x(t-b)$
	- \div Define $y(t) = v(at) = x(at-b)$
- \div Method B: "Scale, then shift"
	- \div Define $v(t) = x(at)$
	- \div Define $y(t) = x(t-b/a) = x(at-b)$

Combination of Operations (cont.)

$+$ Example 1:

Combination of Operations (cont.)

$+$ Example 2:

Example #1

 \div Given the signal $x(t)$ as shown below:

 \div (a): Draw the signal $x(t+1)$

- \div (b): Draw the signal x(-t+1) obtained by a time shift and a time reversal.
- \div (c): Draw the time scaled signal $x(3/2t)$
- \pm (d): Draw the signal x (3/2t+1) obtained by a time shift and scaling.

Decimation & Expansion

Decimation

- **+** Decimation is defined as: $y_D[n] = x[Mn]$
- + For some integers M. M is called the decimation factor.
- $+$ When M=2.

Expansion

Example 4 Expanion is defined as:
\n
$$
y_E[n] = \begin{cases}\nx \left[\frac{n}{L}\right], & n = \text{integer} & \text{multiple} \quad of \quad L \\
0, & \text{otherwise}\n\end{cases}
$$

❖ L is called the expansion factor.

◆ When L=2.

Classification of Signals

Periodic vs Aperiodic

 \pm Definition-1: A continuous time signal $x(t)$ is periodic if there is a $constantT > o$ such that:

$$
x(t) = x(t+T), \quad for \quad all \quad t \in R
$$

 \div Definition-2: A discrete time signal x[n] is periodic if there is an integer constant $N > o$ such that:

$$
x[n] = x[n+N], \quad for \quad all \quad n \in \mathbb{Z}
$$

- \div Signals do not satisfy the periodicity conditions are called aperiodic signals.
- \div T_o is called the fundamental period of x(t) if it is the smallest value of T >o satisfying the periodicity condition. The number $\omega_0 = \frac{2\pi}{T}$ is called the fundamental frequency of $x(t)$. T_{0}

Periodic vs Aperiodic (cont.)

 \div N_o is called the fundamental period of x[n] if it is smallest value of $N > o$ where $N \varepsilon Z$ satisfying the periodicity condition. The number $\frac{\Omega_0}{\Omega} = \frac{m}{N}$ is called the fundamental frequency of x[n]. 2π $=\frac{m}{\sqrt{m}}$ *N*

Example #2

 \div Determine the fundamental period of the following signals:

$$
(a): e^{j3\pi t/5}
$$

$$
(b): e^{j3\pi n/5}
$$

Even & Odd Signals

- \div An even signal is any signal f such that $f(t) = f(-t)$.
- \div A signal x(t) or x[n] is referred to as an even signal if it is identical to its time-reversed counterpart, i.e., with its reflection about the origin.
- \div An odd signal on the other hand is a signal f such that $f(t) = (f(-t)).$
- \pm Any signal can be written as a combination of an even and odd signal, i.e., every signal has an odd-even decomposition.

$$
f(t) = \frac{1}{2} (f(t) + f(-t)) + \frac{1}{2} (f(t) - f(-t))
$$

Even & Odd Signals (cont.)

❖ The all-zero signal is both even and odd. Any other signal cannot be both even and odd, but may be neither.

Thank You