

Circuit Analysis-II

Angular Measurement

Angular Measurement of a Sine **Nave**

- \overline{v} As we already know that a sinusoidal voltage can be produced by an ac generator.
- \checkmark As the windings on the rotor of the ac generator go through a full 360° of rotation, the resulting voltage is one full cycle of a sine wave.
- \checkmark Thus the angular measurement of a sine wave can be related to the angular rotation of a generator as shown below:

Angular Measurement of a Sine Wave (cont.)

- \overline{v} A degree is an angular measurement corresponding to 1/360 of a circle or a complete revolution.
- \checkmark A radian is the angular measurement along the circumference of a circle that is equal to the radius of the circle.
- \checkmark One radian (rad) is equivalent to 57.3°, as shown below:

Angular Measurement of a Sine Wave (cont.)

- \checkmark In a 360° revolution, there are 2π radians.
- \checkmark The Greek letter π (pi) represents the ratio of circumference of any circle to its diameter and has a constant value of approximately 3.1416.

Degree & Radian

 \checkmark Below is the list of several values of degree and the corresponding radian values and there angular measurements:

Radian / Degree Conversion

 \checkmark Degrees can be converted to radians:

$$
rad = \left(\frac{\pi rad}{180^{\circ}}\right) \times \text{deg} \,rees
$$

 \checkmark Similarly, radians can be converted to degree:

$$
\deg rees = \left(\frac{180^{\circ}}{\pi rad}\right) \times rad
$$

Example #1

О

 \checkmark (a): Convert 60 \degree to radians. \checkmark (b): Convert $\pi/6$ rad to degrees.

Sine Wave Angles

- \checkmark The angular measurement of a sine wave is based on 360 $^{\circ}$ or 2π for a complete cycle.
- \checkmark A half cycle is 180° or π rad; a quarter cycle is 90° or π/2 rad and so on.

Phase of a Sine Wave

 \checkmark The phase of a sine wave is an angular measurement that specifies the position of that sine wave relative to a reference. \checkmark When the sine wave is shifted left or right with respect to this reference, there is a phase shift.

Phase Shift

 \checkmark Phase shift of a sine wave is shown below:

a) A leads B by 90 $^{\circ}$, or B lags A by 90 $^{\circ}$.

(b) *B* leads *A* by 90 $^{\circ}$, or *A* lags *B* by 90 $^{\circ}$.

Ο

77

Sine Wave Formula

Formula

- \checkmark The sine wave amplitude (A) is the maximum value of the voltage or current on the vertical axis, angular values run along the horizontal axis.
- \checkmark The variable y is an instantaneous value that represents either voltage or current at a given angle, θ.

Formula (cont.)

 \checkmark The general expression for the sine wave is:

 $y = A \sin \theta$

- \checkmark This formula states that at any point on the sine wave, represented by an instantaneous value (y) , is equal to the maximum value A time the sine (sin) of the angle θ at that point.
- \checkmark For example:
	- \checkmark A certain voltage sine wave has a peak value of 10V. The instantaneous voltage at a point 60° along the horizontal axis is as follows, where y=v and $A=V_p$:

 $v = V_p \sin \theta = (10V) \sin 60^\circ = (10V)(0.866) = 8.66V$

Expressions for Phase-Shifted **Sine Waves**

 \vee When sine wave is shifted to the right of the reference (lagging) by a certain angle Φ, the general expression is : $y = A \sin(\theta - \phi)$

Expressions for Phase-Shifted Sine Waves (cont.)

 \checkmark When a sine wave is shifted to the left of the reference (leading) by a certain angle, Φ, the genera expression is: $y = A \sin(\theta + \phi)$

Example #3

 \checkmark Determine the instantaneous value at the 90 \degree reference point on the horizontal axis for each voltage sine wave shown below:

Introduction to Phasors

Phasors \checkmark A phasor is a type of vector but the term generally refers to quantities that vary with time, such as sine waves. 90° Magnitude 180° Ωo

 \checkmark The length of the phasor "arrow" represents the magnitude of a quantity.

 270°

Phasors (cont.)

 \checkmark The angle, θ represents the angular position, for a positive angle.

Phasor Representation of a **Sine Wave**

- \checkmark A full cycle of a sine wave can be represented by rotation of a phasor through 360 degrees.
- \checkmark The instantaneous value of the sine wave at any point is equal to the vertical distance from the tip of the phasor to the horizontal axis.

Phasors & the Sine Wave **ormula**

 \checkmark The figure below shows a voltage phasor at an angular position of 45° and the corresponding point on the sine wave:

 \checkmark The vertical distance from the phasor tip down to the horizontal axis represents the instantaneous value of the sine wave at that point.

Phasors & the Sine Wave Formula (cont.)

- \checkmark When a vertical line is drawn from the phasor tip down to the horizontal axis, a right triangle is formed.
- \checkmark The length of the phasor is the hypotenuse of the triangle, and the vertical projection is the opposite side.
- \checkmark The opposite side of a right triangle is equal to the hypotenuse times the sine of the angle θ.
- \checkmark The length of the phasor is the peak value of the sinusoidal voltage, V_p . Thus the opposite side of the triangle, which is the instantaneous value, can be expressed as:

Phasors & the Sine Wave Formula (cont.)

 $\overline{\mathsf{v}}$ A similar formula applies to a sinusoidal current:

 $i = I_p \sin \theta$

Positive & Negative Phasor Angles

- \checkmark The position of a phasor at any instant can be expressed as a positive angle or as an equivalent negative angle. \checkmark Positive angles are measured counterclockwise from 0 \degree and
	- negative angles are measured clockwise from 0°.

Phasor Diagrams

- \checkmark A phasor diagram can be used to show the relative relationship of two or more sine waves of the same frequency.
- \checkmark A phasor in a fixed position is used to represent a complete sine wave because once the phase angle b/w two or more sine waves of the same frequency or b/w the sine wave and a reference is established the phase angle remains constant throughout the cycles.

Angular Velocity of a Phasor

- \checkmark One cycle of a sine wave is traced out when a phasor is rotated through 360 degrees or 2π radians.
- \checkmark The faster it is rotated, the faster the sine wave cycle is traced out. Thus the period and frequency are related to the velocity of rotation of the phasor.
- \checkmark The velocity of rotation is called the angular velocity and is designated ω.
- \checkmark The angular velocity can be expressed as:

$$
\omega = \frac{2\pi}{T}
$$

 $\sqrt{ }$ Since f=1/T,

 $\omega = 2\pi f$

Angular Velocity of a Phasor (cont.)

 \checkmark When a phasor is rotated at an angular velocity ω , then ωt is the angle through which the phasor has passed at any instant. \vee Therefore, the following relationship can be stated:

 $\theta = \omega t$

 \checkmark Substituting 2πf for ω results in θ = 2πft.

 \checkmark The equation for the instantaneous value of a sinusoidal voltage, v= V_p sinθ can be written as:

 $v = V_p \sin 2\pi f t$

AC Circuit Analysis

A.C. Analysis

- \checkmark If a sinusoidal voltage is across a resistor there is a sinusoidal current.
- \checkmark The current is zero when the voltage is zero and is maximum when the voltage is maximum.
- $\sqrt{ }$ When the voltage changes polarity, the current reverses direction.
- \checkmark As a result, the voltage and current are said to be in phase with each other.

Ohm's Law

 \checkmark When ohm's law is used in A.C. circuits, both the voltage and the current must be expressed consistently, i.e., both as peak values, both as rms values, both as average values and so on.

 \checkmark The source voltage is the sum of all the voltage drops across the resistors, just as in a dc circuit.

Power

- \checkmark Power in resistive A.C. circuits is determined the same as for dc circuits except that you must use rms values of current and voltage.
- \checkmark The general power formulas are restated for a resistive A.C. circuits as:

$$
P = V_{rms} I_{rms}
$$

$$
P = \frac{V^2}{R}
$$

^P = *^I rms* ² *R*

Example #5

 \checkmark Consider the figure below and calculate the following:

 \checkmark (a): Find the unknown peak voltage drop in fig: a.

 \checkmark (b): Find the total rms current in fig: b.

 \checkmark (c): Find the total power in fig: b if V_{rms}=24V.

 \checkmark Note: All values in the circuits are given in rms.

Thank You