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Continuous	&	Discrete	
Signals	



Classification	of	Signals	



Periodic	vs	Aperiodic	

Ê  Definition-1:	A	continuous	time	signal	x(t)	is	periodic	if	there	is	a	
constant	T	>	0	such	that:	

Ê  Definition-2:	A	discrete	time	signal	x[n]	is	periodic	if	there	is	an	
integer	constant	N	>	0	such	that:	

Ê  Signals	do	not	satisfy	the	periodicity	conditions	are	called	aperiodic	
signals.	

Ê  T0	is	called	the	fundamental	period	of	x(t)	if	it	is	the	smallest	value	
of	T	>0	satisfying	the	periodicity	condition.	The	number 													is	
called	the	fundamental	frequency	of	x(t).		

x t( ) = x t +T( ), for all t ∈ R

x n[ ] = x n+ N[ ], for all n ∈ Z

ω0 =
2π
T0



Periodic	vs	Aperiodic	(cont.)	

Ê  N0	is	called	the	fundamental	period	of	x[n]	if	it	is	smallest	
value	of	N	>	0	where	N	ε	Z	satisfying	the	periodicity	
condition.	The	number 					is	called	the	fundamental	
frequency	of	x[n].		

Ω0

2π
=
m
N



Example	#1	

Ê  Determine	the	fundamental	period	of	the	following	signals:	

a( ) : e j3π t/5

b( ) : e j3πn/5



Even	&	Odd	Signals	

Ê  An	even	signal	is	any	signal	f	such	that	f(t)	=	f(-t).	

Ê  A	signal	x(t)	or	x[n]	is	referred	to	as	an	even	signal	if	it	is	
identical	to	its	time-reversed	counterpart,	i.e.,	with	its	
reflection	about	the	origin.	

Ê  An	odd	signal	on	the	other	hand	is	a	signal	f	such	that	f(t)	=	-
(f(-t)).	

Ê  Any	signal	can	be	written	as	a	combination	of	an	even	and	
odd	signal,	i.e.,	every	signal	has	an	odd-even	decomposition.	

f t( ) = 12 f (t )+ f (−t )( )+ 12 ( f (t )− f (−t ))



Even	&	Odd	Signals	(cont.)	

v  The	 all-zero	 signal	 is	 both	 even	 and	 odd.	 Any	 other	 signal	
cannot	be	both	even	and	odd,	but	may	be	neither.	



Energy	&	Power		

v  The	 total	 energy	 of	 a	 continuous	 time	 signal	 x(t)	 ,	 where	 x(t)	 is	
defined	for																							,	is	

v  The	time-average	power	of	a	signal	is:	

v  An	energy	signal	is	a	signal	with	finite	E∞.	For	an	energy	signal,	P∞	
=0.	

v  A	 power	 signal	 is	 a	 signal	 with	 finite,	 nonzero	 	 P∞.	 For	 a	 power	
signal,	E∞=∞.	

−∞ < t <∞

E
∞
= x 2 (t )dt

−∞

∞

∫ = lim
T→∞

x 2 (t )dt
−T

T

∫

P
∞
= lim
T→∞

1
2T

x 2 (t )dt
−T

T

∫



Energy	&	Power	(cont.)	

v  The	total	energy	of	a	discrete-time	signal	is	defined	by:	

v  The	time-average	power	is:	

E
∞
= x 2 n⎡⎣ ⎤⎦
n=−∞

∞

∑ = lim
N→∞

x 2 n⎡⎣ ⎤⎦
n=−N

N

∑

P
∞
= lim
N→∞

1
2N +1

x 2 n⎡⎣ ⎤⎦
n=−N

N

∑



Continuous-Time	Complex	Exponential	

v  The	 continuous-time	 complex	 exponential	 signal	 is	 of	 the	
form:	

v  Depending	 upon	 the	 values	 of	 these	 parameters,	 the	
complex	 exponential	 can	 exhibit	 several	 different	
characteristics.	

x t( ) =Ceat, where C, a ∈C



Real	Exponential	Signals	

v  If	C	and	a	are	real	there	are	basically	two	types	of	behaviour.	

v  If	a	is	positive,	then	as	t	increase	x(t)	is	a	growing	exponential,	
i.e.,	when	a>0.	

v  If	a	is	negative	then	x(t)	is	a	decaying	exponential,	i.e.,	when	
a<0.	

v  When	a=0	then	x(t)	is	constant.	

a>0	 a<0	



Periodic	Complex	Exponential	

v  Let’s	consider	the	case	where	a	is	purely	imaginary,	i.e.,	a	=	jω0,	ω0	
belongs	to	R.		

v  Since	C	is	a	complex	number,	we	have:	 	 	 	where	A,	θ	belongs	
to	R.	

v  Consequently:	

v  The	real	and	imaginary	parts	of	x(t)	are:		

C = Ae jθ

x t( ) =Ce jω0t = Ae jθe jω0t

= Ae j ω0t+θ( ) = Acos ω0t +θ( )+ jAsin ω0t +θ( )

Re x t( ){ }= Acos ω0t +θ( )
Im x t( ){ }= Asin ω0t +θ( )



Periodic	Complex	Exponential	(cont.)	

v  We	 can	 think	 of	 x(t)	 as	 a	 pair	 of	 sinusoidal	 signals	 of	 the	 same	
amplitude	A,	ω0	and	phase	shift	θ	with	one	a	cosine	and	the	other	
a	sine.	

Periodic	complex	exponential	function	x(t)=	Cejω0t,	C=1,	ω0=2π	



Periodic	Complex	Exponential	(cont.)	

v  																														is	periodic	with:	

v  Fundamental	period:	T0	=	2π/|ω0|	

v  Fundamental	frequency:		|ω0|	

v  	the	second	claim	is	the	immediate	result	from	the	first	claim.	To	show	the	
first	 claim,	 we	 need	 to	 show	 that	 x(t+T0)	 =	 x(t)	 and	 no	 smaller	T0	 can	
satisfy	the	periodicity	criteria.	

v  It	is	easy	to	show	that	T0	is	the	smallest	period.	

x t( ) =Ce jω0t

x t +T0( ) =Ce
jω0 t+

2π
ω0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=Ce jω0te± j2π

=Ce jω0t = x(t)



General	Complex	Exponential	

v  The	most	 general	 case	 of	 a	 complex	 exponential	 can	 be	 expressed	 and	
interpreted	 in	 terms	 of	 the	 two	 cases:	 the	 real	 exponential	 and	 the	
periodic	complex	exponential.	

v  Consider	a	complex	exponential	Ceat,	where	C	is	expressed	in	polar	form	
and	a	in	rectangular	form.	I.e.,		

v  And:	

v  Then:	

v  Using	Euler’s	relation,	we	can	expand	this	further	as:	

C = C e jθ

a = r + jω0

Ceat = C e jθe r+ jω0( )t = C erte j ω0t+θ( )

Ceat = C ert cos ω0t +θ( )+ j C ert sin ω0t +θ( )



General	Complex	Exponential(cont.)	

v  Thus	 for	 r=0,	 the	 real	and	 imaginary	parts	of	a	complex	exponential	are	
sinusoidal.	

v  For	 r>0	 they	 correspond	 to	 sinusoidal	 signals	 multiplied	 by	 a	 growing	
exponential.	

v  For	r	<	0,	they	correspond	to	sinusoidal	signals	multiplied	by	a	decaying	
exponential.	

v  As	shown	below:	(a)	is	growing	sinusoidal	signal	when	r>0,	(b)	is	decaying	
sinusoid	when	r<0.	



General	Complex	Exponential(cont.)	

v  Sinusoidal	 signals	 multiplied	 by	 decaying	 exponentials	 are	
commonly	referred	to	as	damped	signals.	



Discrete-Time	Complex	Exponential	

v  A	discrete-time	complex	exponential	function	has	the	form:	

v  Where	C,	β	belongs	to	Complex.	Letting	α=eβ	:	

x n[ ] =Ceβn

x n[ ] =Cα n



Real-Valued	Complex	Exponential	

v  x[n]	is	a	real-valued	complex	exponential	when	C	belongs	to	R	and	
α	belongs	to	R.	

v  In	this	case,	x[n]=Cαn	is	a	monotonic	decreasing	function	when	0	<	
α	<1	and	is	a	monotonic	increasing	when	α	>	1.	

The	real	exponential	signal	(a)	α>1,	(b)	0<	α	<1,	(c)	-1<	α	<0,	(d)	α	<	-1	



Complex-Valued	Complex	Exponential	

v  x[n]	is	a	complex-valued	complex	exponential	when	C,α	belongs	to	
complex.		

v  In	this	case	C	and	α	can	be	written	as:	

C = C e jθ and α = α e jΩ0

Comsequently,

x n[ ] =Cα n = C e jθ α e jΩ0( )
n

= C α
n e j Ω0n+θ( )

= C α
n cos Ω0n+θ( )+ j C α

n sin Ω0n+θ( )



Complex-Valued	Complex	
Exponential(cont.)	

v  Three	cases	can	be	considered	here:	
v  When	|α|=1,	then	x[n]	=	 |C|cos	(Ω0n+θ)	+	j	 |C|sin	(Ω0n+θ)	and	it	has	sinusoidal	

real	and	imaginary	parts	(not	necessarily	periodic	though).	

v  When	 |α|	 >	 1,	 then	 |α|n	 is	 a	 growing	 exponential,	 so	 the	 real	 and	 imaginary	
parts	of	x[n]	are	the	product	of	this	with	sinusoids.		

v  When	|α|	<	1,	then	the	real	and	imaginary	parts	of	x[n]	are	sinusoids	sealed	by	
a	decaying	exponential.		

(a)	Growing	Discrete-time	
sinusoidal	signals	(b)	decaying	

discrete	time	sinusoid		



Periodic	Complex	Exponential	

v  Consider 	 									.			 			We	want	to	study	the	condition	for	x[n]	to	
be	periodic.		

v  The	periodicity	condition	requires	that,	for	some	N>0,		

v  Since																													,	it	holds	that:		

v  This	is	equivalent	to:	

x n+ N[ ] = x n[ ], ∀n ∈ Z

x n⎡⎣ ⎤⎦=Ce
jΩ0n ,Ω0 ∈ R

x n[ ] =Ce jΩ0n

e jΩ0 n+N( ) = e jΩ0ne jΩ0N = e jΩ0n, ∀n ∈ Z

e jΩ0N =1 or Ω0N = 2πm, for some m ∈ Z



Periodic	Complex	Exponential	(cont.)	

v  Therefore,	the	condition	for	periodicity	of	x[n]	is:	

v  For	some	m	belongs	to	Z	and	some	N>0,	N	belongs	to	Z.	

Ω0 =
2πm
N



Periodic	Complex	Exponential	(cont.)	

v  Thus	x[n]	=	ejΩon	is	periodic	if	and	only	if	Ω0	is	a	rational	multiple	of	
2π.	

v  The	fundamental	period	is:	

v  Where	we	assume	that	m	and	N	are	relatively	prime,	gcd	(m,n)	=1,	
i.e.,	m/N	is	in	reduced	form.	

	

N =
2πm
Ω0



Impulse	&	Step	Functions	



Discrete-Time	Impulse	&	Step	Functions	

v  The	discrete-time	unit	impulse	signal	δ[n]	is	defined	as:	

v  The	discrete-time	unit	step	signal	u[n]	is	defined	as:	

δ(n) =
1 for n = 0
0 for n ≠ 0

⎧
⎨
⎪

⎩⎪

u(n) =
1 for n ≥ 0
0 for n < 0

"
#
$

%$



Relation	B/w	Unit	Impulse	&	Unit	Step	
Sequences	

v  Discrete	 time	 unit	 impulse	 is	 the	 first	 difference	 of	 the	 discrete	
time	unit	step.	I.e.;	δ[n]=u[n]-u[n-1]	

v  Discrete	time	unit	step	is	the	running	sum	of	the	discrete	time	unit	
impulse	or	unit	sample.	i.e.;		

u[n]= δ[m]
m=−∞

n

∑



Property	of	δ[n]	

v  Sampling	Property:	

v  By	the	definition	δ[n],	δ[n-n0]	=	1	if	n=n0	and	0	otherwise.	

v  	Therefore,	

v  As	a	special	case	when	n0=0,	we	have	x[n]	δ[n]=x[0]	δ[n].		

v  When	 a	 signal	 x[n]	 is	 multiplied	 with	 δ[n],	 the	 output	 is	 a	 unit	
impulse	with	amplitude	x[0].	

x n[ ]δ n− n0[ ] =
x n[ ], n = n0
0, n ≠ n0

⎧
⎨
⎪

⎩⎪

= x n0[ ]δ n− n0[ ]



Property	of	δ[n]	(cont.)	



Property	of	δ[n]	(cont.)	

v  Shifting	Property:	

v  Since	x[n]	δ[n]=	x[0]	δ[n]	and 	 							,	we	have	

v  And	similarly:	

v  In	general,	the	following	result	holds:	

x[n]δ n[ ]
n=−∞

∞

∑ = x 0[ ]δ n[ ]
n=−∞

∞

∑ = x 0[ ] δ n[ ]
n=−∞

∞

∑ = x 0[ ]

δ n[ ]
n=−∞

∞

∑ =1

x[n]δ n− n0[ ]
n=−∞

∞

∑ = x[n0 ]δ n− n0[ ]
n=−∞

∞

∑ = x[n0 ]

x[n]δ n− n0[ ]
n=a

b

∑ =
x n0[ ], if n0 ∈ a,b[ ]

0, if n0 ∉ a,b[ ]

⎧

⎨
⎪

⎩
⎪



Continuous-Time	Impulse	&	Step	
Functions	

v  The	Dirac	delta	is	defined	as:	

v  Where:	

v  The	unit	step	function	is	defined	as:	

δ(t) =
1 for t = 0
0 for t ≠ 0

⎧
⎨
⎪

⎩⎪

δ t( )dt
−∞

∞

∫ =1

u(t) =
1 for t ≥ 0
0 for t < 0

⎧
⎨
⎪

⎩⎪



Property	of	δ(t)	

v  The	properties	of	δ(t)	are	analogous	to	the	discrete-time	case:	

v  Sampling	Property:	

v  Note	that	x(t)	δ(t)	=	x(0)	when	t=0	and	x(t)	δ(t)	=0	when	t≠0.	

v  Similarly	we	have:	

x t( )δ t( ) = x 0( )δ t( )

x t( )δ t − t0( ) = x t0( )δ t − t0( )
for any t0 ∈ R



Property	of	δ(t)	(cont.)	

v  Shifting	Property:	
v  The	shifting	property	follows	from	the	sampling	property.	

v  Integrating	x(t)	δ(t)	yields:	

v  Similarly,	one	can	show	that:	

x t( )δ t( )dt
−∞

∞

∫ = x 0( )δ t( )dt
−∞

∞

∫ = x 0( ) δ t( )dt
−∞

∞

∫ = x 0( )

x t( )δ t − t0( )dt
−∞

∞

∫ = x t0( )



Continuous	&	Discrete	
Systems	



Fundamentals	of	Systems	



Systems	

v  A	system	in	the	broadcast	sense	are	an	 interconnection	of	components,	
devices	or	subsystems.	

v  A	 system	 can	 be	 viewed	 as	 a	 process	 in	 which	 input	 signals	 are	
transformed	by	the	system	or	cause	the	system	to	respond	in	some	way	
resulting	in	other	signals	as	output.	

v  A	 continuous	 time	 system	 is	 a	 system	 in	 which	 continuous	 time	 input	
signals	 are	 applied	 and	 result	 in	 continuous	 time	 output	 signals.	 The	
input-output	relation	is	represented	by	the	following	notation:	x(t)èy(t).	



Systems	(cont.)	

v  Similarly	 a	 discrete	 time	 system	 is	 a	 system	 that	 transforms	
discrete	 time	 inputs	 into	 discrete	 time	 outputs	 and	 represented	
symbolically	as:	x[n]èy[n].	



Example	#2	

v  Consider	the	RC	circuit	depicted	below:	

v  If	we	regard	vs(t)	as	the	input	signal	and	vc(t)	as	the	output	signal,	then	we	
can	 use	 simple	 circuit	 analysis	 to	 derive	 an	 equation	 describing	 the	
relationship	between	the	input	and	output.	

v  Specifically	 from	 Ohm’s	 law	 the	 current	 i(t)	 through	 the	 resistor	 is	
proportional	 (with	 proportionality	 constant	 1/R)	 to	 the	 voltage	 drop	
across	the	resistor;	i.e.,		



Example	#2	(cont.)	

v  Similarly,	 using	 the	 defining	 constitutive	 relation	 for	 a	 capacitor,	
we	can	 relate	 i(t)	 to	 the	 rate	of	 change	with	 tome	of	 the	voltage	
across	the	capacitor:	

v  Equating	the	right	hand	side	of	above	two	equations,	we	obtain	a	
differential	equation	describing	the	relationship	between	the	input	
vs(t)	and	the	output	vc(t):	

i t( ) =
vs t( )− vc t( )

R

i t( ) =C dvc
dt

dvc
dt

+
1
RC

vc t( ) =
1
RC

vs t( )



Thank	You	


