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LTI	Systems	



LTI	Systems	

v  LTI=	Linear	Time	Invariant	Systems	

v  As	Linear	systems	follow	the	principle	of	superposition,	hence	LTI	
will	also	follow	the	principle	of	superposition.	

v  Any	 delay	 in	 the	 input	 is	 reflected	 in	 output,	 property	 of	 Time	
invariant	system	will	also	be	followed	by	LTI	system.		

LTI	
System	

x(t)	=δ(t)	 y(t)=	h(t)	



Impulse	Response	

v  Impulse	 response	 is	 the	 output	 of	 an	 LTI	 system	 and	 it	 is	 only	
related	to	LTI	systems.	

v  Unit	impulse	signal	is	the	input	of	LTI	system	and	impulse	response	
h(t)	is	the	output	or	response	of	unit	impulse	signal.	

	



Convolution	



Introduction	

v  A	convolution	is	an	 integral	that	expresses	the	amount	of	overlap	
of	one	function	when	it	is	shifted	over	another	function.	

v  The	input	signal	can	be	decomposed	into	a	set	of	impulses,	each	of	
which	is	scales	and	shifted	delta/impulse	function.	

v  The	output	from	each	impulse	is	scaled	and	shifted	version	of	the	
impulse	response.	

v  Then	the	overall	output	signal	can	be	added	to	form	one	output.	

v  That	is	if	we	know	the	system’s	impulse	response	we	can	calculate	
the	output	for	any	possible	input.	

v  This	response	is	known	as	convolution	kernel.	



The	Convolution	Sum	

v  Denote	by	h[n]	the	“impulse	response”	of	an	LTI	system	S.	

v  The	 impulse	 response	 is	 the	 response	 of	 the	 system	 to	 a	 unit	
impulse	input.	

v  The	definition	of	an	unit	impulse	is:	

v  Let	consider:	

δ n[ ] =
1, n = 0
0, n ≠ 0

⎧
⎨
⎪

⎩⎪

System	S	
x[n]=δ[n]	 y[n]=h[n]	

x n[ ]δ n− n0[ ] = x n0[ ]δ n− n0[ ]



The	Convolution	Sum	(cont.)	

v  Using	the	above	favt	we	get	the	following	equalities:	

v  The	sum	on	the	left	hand	side	is:	

v  Because																											for	all	n.		

x n[ ]δ n[ ] = x 0[ ]δ n[ ], n0 = 0( )

x n[ ]δ n−1[ ] = x 1[ ]δ n−1[ ], n0 =1( )

x n[ ]δ n− 2[ ] = x 2[ ]δ n− 2[ ], n0 = 2( )
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The	Convolution	Sum	(cont.)	

v  The	sum	on	the	right	hand	side	is:	

v  Therefore,	equating	the	left	hand	side	and	right	hand	side	yields:	

v  Any	signal	x[n]	can	be	expressed	as	a	sum	of	impulses.	

v  Suppose	we	 know	 that	 the	 impulse	 response	 of	 an	 LTI	 system	 is	
h[n]	and	we	want	to	determine	the	output	y[n].		

v  To	do	so	we	first	express	x[n]	as	a	sum	of	impulses:	

x k[ ]δ n− k[ ]
k=−∞

∞

∑

x[n]= x k[ ]δ n− k[ ]
k=−∞

∞

∑

x[n]= x k[ ]δ n− k[ ]
k=−∞

∞

∑



The	Convolution	Sum	(cont.)	

v  For	each	 impulse	δ	 [n-k],	we	can	determine	 its	 impulse	response,	
because	for	an	LTI	system:	

v  Consequently,	we	have:	

v  Where	the	equation:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	is	known	as	the	
convolution	sum	/	equation.																																																	

δ n− k[ ]→ h[n− k]

x[n]= x k[ ]δ n− k[ ]
k=−∞

∞

∑ → x k[ ]h n− k[ ]
k=−∞

∞

∑ = y n[ ]

y n[ ] = x k[ ]h n− k[ ]
k=−∞

∞

∑



How	to	Evaluate	Convolution?	

v  There	 are	 three	 basic	 steps	 used	 to	 evaluate	 convolution	 of	 any	
signal:	
v  Flip	
v  Shift	
v  Multiply	and	Add.	



Example	#1	

v  Consider	 the	 signal	 x[n]	 and	 the	 impulse	 response	 h[n]	 shown	
below:	



Continuous-Time	Convolution	

v  “*”	is	the	convolution	operator.	

v  Replace	t	by	dummy	variable	τ,	as	we	are	going	to	shift	our	signal	
waveform	and	time	will	vary	so	to	avoid	confusion	we	are	replacing	
t.	

y t( ) = h t( )∗ x t( ) = x τ( ).h t −τ( )
−∞

∞

∫



Steps	of	Convolution	

v  Step	#1:	Replace	t	by	τ.		

v  Step	#2:	Perform	the	time	reversal	on	one	of	the	signal.	

v  Step	#3:	Perform	the	time	shifting	against	τ	on	the	reversed	signal.	

v  	Step	#4:	Multiply	x(τ)	and	h(t-τ).	

v  Step	#5:	Integrate	them.	



Example	#2	

v  x(t)	è	i/p…. h(t)	è	o/p	(impulse	response) ....y(t)	=?	

	

x(t)	

1	

2	 t	1	0	

h(t)	

1	

1	 t	0	



Properties	of	Convolution	



Properties	

v  The	convolution	properties	are	as	follows:	
v  Commutative	Property	
v  Associative	Property	
v  Distributive	Property		



Commutative	Property	

v  A	basic	property	of	 convolution	 in	both	 continuous	and	discrete	 time	 is	
that	it	is	a	commutative	operation.	

v  In	discrete	time	it	is:	

v  In	continuous	time	it	is:	

v  Proof:	In	the	discrete	time	case	if	we	let	r=n-k	or	equivalently	k=n-r	then:	

v  With	 this	 substitution	 of	 variables,	 the	 roles	 of	 x[n]	 and	 h[n]	 are	
interchanged.	

x n[ ]∗h n[ ] = h n[ ]∗ x n[ ] = h k[ ] x n− k[ ]
k=−∞
∑

x t( )∗h t( ) = h t( )∗ x t( ) = h τ( ) x t −τ( )dτ
−∞

∞

∫

x n[ ]∗h n[ ] = x k[ ]h n− k[ ]
k=−∞

+∞

∑ = x n− r[ ]h r[ ]
r=−∞

+∞

∑ = h n[ ]∗ x n[ ]



Commutative	Property	(cont.)	

v  This	 property	 states	 that	 one	 of	 the	 two	 forms	 for	 computing	
convolutions	in	discrete	time	and	continuous	time	may	be	easier	to	
visualize,	but	both	forms	always	result	in	the	same	answer.	

	



Distributive	Property	

v  Convolution	distributes	over	addition	so	that	in	discrete	time:	

v  In	continuous	time:	

	

v  Interpretation	of	Distributive	property	of	convolution	for	a	parallel	
interconnection	of	LTI	systems	is	shown	below:	

x n⎡⎣ ⎤⎦∗ h1 n⎡⎣ ⎤⎦+ h2 n⎡⎣ ⎤⎦( ) = x n⎡⎣ ⎤⎦∗h1 n⎡⎣ ⎤⎦+ x n⎡⎣ ⎤⎦∗h2 n⎡⎣ ⎤⎦

x t( )∗ h1 t( )+ h2 t( )⎡⎣ ⎤⎦= x t( )∗h1 t( )+ x t( )∗h2 t( )



Distributive	Property	(cont.)	

v  The	 two	 systems	 with	 impulse	 responses	 h1(t)	 and	 h2(t)	 have	 identical	
inputs	and	their	outputs	are	added.		

v  Since:	

v  The	system	of	above	figure	has	output:	

v  The	system	of	second	figure	has	the	output:	

y1 t( ) = x t( )∗h1 t( )
and
y2 t( ) = x t( )∗h2 t( )

y t( ) = x t( )∗h1 t( )+ x t( )∗h2 t( )

y t( ) = x t( )∗ h1 t( )+ h2 t( )⎡⎣ ⎤⎦



Distributive	Property	(cont.)	

v  Comparing	both	the	above	results	we	see	that	the	systems	in	
above	figures	are	identical.	

v  In	same	way	distributive	property	of	discrete	time	can	also	be	
proved.	



Associative	Property	

v  Another	 important	 and	 useful	 property	 of	 convolution	 is	
associative	property.	

v  In	discrete	time:	

v  In	continuous	time:	

v  As	a	consequence	of	the	associative	property,	the	expressions:		

x n[ ]∗ h1 n[ ]∗h2 n[ ]( ) = x n[ ]∗h1 n[ ]( )∗h2 n[ ]

x t( )∗ h1 t( )∗h2 t( )⎡⎣ ⎤⎦= x t( )∗h1 t( )⎡⎣ ⎤⎦∗h2 t( )

y n[ ] = x n[ ]∗h1 n[ ]∗h2 n[ ]
and
y t( ) = x t( )∗h1 t( )∗h2 t( )



Associative	Property	(cont.)	

v  Are	 unambiguous.	That	 is	 it	 does	 not	 matter	 in	 which	 order	 we	
convolve	these	signals.	

v  An	 interpretation	 of	 the	 associative	 property	 is	 illustrated	 for	
discrete	time	systems	in	figures	below:	



Associative	Property	(cont.)	

v  According	to	the	associative	property	the	series	interconnection	of	
the	two	systems	in	fig(a)	is	equivalent	to	the	single	system	in	fig(b).	

v  This	 can	be	generalized	 to	 an	 arbitrary	number	of	 LTI	 systems	 in	
cascade	and	the	analogous	interpretation	and	conclusion	also	hold	
in	continuous	time.	

y n[ ] = w n[ ]∗h2 n[ ] = x n[ ]∗h1 n[ ]( )∗h2 n[ ], fig(a)

y n[ ] = x n[ ]∗h n[ ] = x n[ ]∗ h1 n[ ]∗h2 n[ ]( ), fig(b)



Associative	Property	(cont.)	

v  By	using	the	commutative	property	together	with	the	associative	
property,	we	find	another	very	important	property	of	LTI	systems.		

v  From	fig(a)	and	(b)	we	can	conclude	that	the	 impulse	response	of	
the	cascade	of	two	LTI	system	is	the	convolution	of	their	individual	
impulse	responses.		

v  Since	 convolution	 is	 commutative	 we	 can	 compute	 this	
convolution	of	h1[n]	and	h2[n]	in	either	order.	

	



Examples	



Example	#3	

v  Convolve	the	two	continuous	time	signals:	



Example	#4	

v  Convolve	the	two	discrete	time	signals:	



Thank	You!	


