

Circuit Analysis-III

Sinusoids

Example #1

 \checkmark Find the amplitude, phase, period and frequency of the sinusoid:

$v(t) = 12\cos(50t + 10^{\circ})$

Signal Conversion

 \checkmark From sine to cosine and vice versa. \checkmark sin (A \pm B) = sin A cos B \pm cos A sin B \checkmark cos (A \pm B) = cos A cos B \pm sin A sin B \checkmark With trigonometric identities: \checkmark cos (ωt) = sin (ωt + 90°) \checkmark -cos (ωt) = sin (ωt - 90°) \checkmark sin (ωt) = cos (ωt - 90°) \checkmark -sin (ωt) = cos (ωt + 90°)

Example #2

О

 \checkmark Convert the following into the cosine form:

 $v(t) = 5\sin(4\pi t - 60^{\circ})$

Phasors

Definition

- \checkmark A phasor is a complex number that represents the amplitude and phase of a sinusoid.
- \checkmark It is a vector that represents a sinusoidal varying quantity by means of a line rotating about a point in a plane.
- \checkmark The length of the line being proportional to the magnitude of the quantity.
- \checkmark The angle between the line and a reference line being equal to the phase of the quantity.

Phasors Representation

- \checkmark A complex number z can be written in rectangular form as: $z = x + jy$ where $j = \sqrt{-1}$
- \checkmark Where x is the real part of z and y is the imaginary part of z. \checkmark In polar and exponential form complex number z can be written as:

 $z = r \angle \phi = re^{j\phi}$

 \checkmark Where r is the magnitude of z and Φ is the phase of z.

Relationship b/w Rectangular & Polar Form

 \checkmark Where x represents the real part and the y axis represents the imaginary part of a complex number.

 \checkmark Given x and y, we can get r and Φ as:

$$
r = \sqrt{x^2 + y^2} \quad , \quad \phi = \tan^{-1} \frac{y}{x}
$$

 \checkmark On the other hand, if we know r and Φ , we can obtain x and y as:

Relationship b/w Rectangular & Polar Form (cont.)

$$
r = \cos \phi \quad , \quad y = r \sin \phi
$$

 \checkmark Thus, z may be written as:

 $z = x + jy = r\angle\phi = r(\cos\phi + j\sin\phi)$

Operations on Phasors

Complex Number Operations

 \checkmark Addition and subtraction of complex numbers are better performed in rectangular form; multiplication and division are better done in polar form.

 \checkmark Addition:

$$
Z_1 + Z_2 = \left(X_1 + X_2\right) + j\left(Y_1 + Y_2\right)
$$

 \checkmark Subtraction:

$$
Z_1 - Z_2 = \left(x_1 - x_2\right) + j\left(y_1 - y_2\right)
$$

 $\sqrt{\ }$ Multiplication:

$$
Z_1 Z_2 = r_1 r_2 \angle \phi_1 + \phi_2
$$

 \checkmark Division:

$$
\frac{Z_1}{Z_2} = \frac{r_1}{r_2} \angle \phi_1 - \phi_2
$$

Complex Number Operations (cont.)

 \checkmark Reciprocal:

1 *z* = 1 *r* $\angle -\phi$

 \checkmark Square root: $\sqrt{z} = \sqrt{r} \angle \phi / 2$

 \checkmark Complex conjugate:

$$
z^* = x - jy = r\angle - \phi = re^{-j\phi}
$$

Representing A Phasor

 \checkmark Time domain representation:

$$
v(t) = V_m \cos(\omega t + \phi)
$$

 \checkmark Phasor domain representation:

 $V = V_{m} \angle \phi$

Representing A Phasor (cont.)

Sinusoid-Phasor Transformation

Example #3

О

 \checkmark Transform the sinusoid to phasors:

 $i = 6\cos(50t - 40^\circ)$ *A*

О Example #4 \checkmark Find the sinusoid representation by the phasor: \overline{I} = –3+ *j* 4*A*

Phasor Relationships for Circuit Elements

V-I Relationships For Resistors

- \checkmark Note: while writing phasors, we can write them with a bar over the letter.
- \checkmark If the current through a resistor R is: $i = I_m \cos \bigl(\omega t + \phi \bigr)$
- \checkmark The voltage across it is given by Ohm's law as:

 $v = iR = Ri = RI$ _{*m*} $\cos(\omega t + \phi)$

 \checkmark The phasor form of this voltage is:

 \checkmark But the phasor representation of the current is $I_m \angle \phi$. Hence: $\overline{V} = R I_{m} \angle \phi$ $∠φ$
ι of the current is $I_{m} ∠ φ$

 $\overline{V} = R\overline{I}$

V-I Relationships For Resistors (cont.)

V-I Relationships For Inductors

- \checkmark For the inductor L, assume the current through it is: $i = I_m \cos(\omega t + \phi)$
- \checkmark The voltage across the inductor is:

$$
v = L\frac{di}{dt} = -\omega L I_m \sin(\omega t + \phi)
$$

 \checkmark As –sin A=cos (A+90°), we can write:

$$
v = \omega L I_m \cos\left(\omega t + \phi + 90^\circ\right)
$$

 \checkmark Which transforms to the phasor:

$$
\overline{V} = \omega L I_m e^{j(\phi + 90^\circ)} = \omega L I_m e^{j\phi} e^{j90^\circ} = \omega L I_m \angle \phi + 90^\circ
$$

V-I Relationships For Inductors (cont.)

 \checkmark But

$$
I_{m}\angle\phi=\overline{I},\quad e^{j90^{\circ}}=j
$$

 \times Thus,

$$
\bar{V} = j\omega L\bar{I}
$$

\checkmark The voltage and current are 90 \degree out of phase.

V-I Relationships For Capacitors

 $v = V_m \cos(\omega t + \phi)$

 $i = C \frac{dv}{dt}$

- \checkmark For the capacitor C, the voltage across it is:
- \checkmark The current through the capacitor is:

 \checkmark By following the same steps we took for the inductor, we obtain:

$$
\overline{I} = j\omega C\overline{V} \Rightarrow \overline{V} = \frac{I}{j\omega C}
$$

dt

 \checkmark The current leads the voltage by 90°.

V-I Relationships For Capacitors (cont.)

Summary of Voltage & Current **Relationships**

AC Circuit Analysis

A.C. Analysis

- \checkmark If a sinusoidal voltage is across a resistor there is a sinusoidal current.
- \checkmark The current is zero when the voltage is zero and is maximum when the voltage is maximum.
- $\sqrt{ }$ When the voltage changes polarity, the current reverses direction.
- \checkmark As a result, the voltage and current are said to be in phase with each other.

Ohm's Law

 \checkmark When ohm's law is used in A.C. circuits, both the voltage and the current must be expressed consistently, i.e., both as peak values, both as rms values, both as average values and so on.

 \checkmark The source voltage is the sum of all the voltage drops across the resistors, just as in a dc circuit.

Power

- \checkmark Power in resistive A.C. circuits is determined the same as for dc circuits except that you must use rms values of current and voltage.
- \checkmark The general power formulas are restated for a resistive A.C. circuits as:

$$
P = V_{rms} I_{rms}
$$

$$
P = \frac{V^2}{R}
$$

$$
P = I_{rms}^2 R
$$

Example #5

 \checkmark Consider the figure below and calculate the following:

 \checkmark (a): Find the unknown peak voltage drop in fig: a.

 \checkmark (b): Find the total rms current in fig: b.

 \checkmark (c): Find the total power in fig: b if V_{rms}=24V.

 \checkmark Note: All values in the circuits are given in rms.

Exercise Problems

Problem #1

 \checkmark Given the sinusoidal voltage: v(t)= 50cos (30t + 10°) V.

- \checkmark What is the amplitude V_m?
- \checkmark What is the period T?
- \checkmark The frequency f ?
- \checkmark Calculate v(t) at t = 10ms.

Problem #3

 \checkmark Find the phasors corresponding to the following signals:

- \checkmark (a): v(t) = 21cos (4t 15°) V
- ✓ (b): i(t) = $-8\sin(10t + 70^{\circ})$ mA

Thank You