

Circuit Analysis-II

Capacitors & Inductors

Introduction

- $\sqrt{ }$ The capacitors and inductors are passive linear circuit elements.
- \checkmark Unlike resistors, which dissipate energy, capacitors and inductors do not dissipate but store energy.
- \checkmark This is the reason capacitors and inductors are called storage elements.

 \checkmark The plates may be aluminum foil while the dielectric may be air, ceramic, paper or mica.

Circuit Analysis-II **Recent Constructs Constructs Constructs** Circuit Analysis-I April, 18

Capacitors (cont.)

 \checkmark When a voltage source v is connected to the capacitor, the source deposits a positive charge q on on plate and a negative charge –q on the other.

 \checkmark The capacitor is said to store the electric charge.

 \checkmark The amount of charge stored, represented by q is directly proportional to the applied voltage v so that: $q = Cv$.

Capacitors (cont.)

- \checkmark Where C is the constant of proportionality, is known as the capacitance of the capacitor.
- \checkmark The unit of capacitance is the farad (F) in honor of the English physicist Michael Faraday.
- $\overline{\mathcal{C}}$ Capacitance is the ratio of the charge on on plate of a capacitor to the voltage difference between the two plates, measured in farads (F) i.e., 1 farad = 1 coulomb/volt.
- \checkmark The capacitance of a capacitor depends on the physical dimensions of the capacitors.
- \checkmark The parallel plate capacitor shown in the fig a, the capacitance is given by:

$$
C = \frac{\varepsilon A}{d}
$$

Capacitors (cont.)

- \checkmark Where A is the surface area of each plate, d is the distance between the plates and ε is the permittivity of the dielectric material between the plates.
- \checkmark Capacitors are commercially available in different values and types. They have the values in the picofarad(pF) to microfarad (µF) range.
- \checkmark They are described by the dielectric material they are made of and whether they are fixed or variable type.

Current-Voltage Relationship

Current-Voltage Relationship of **Capacitor**

 \checkmark To obtain the current-voltage relationship of the capacitor, we take the derivative of both sides of q=Cv. Since *ⁱ* ⁼ *dq*

 \checkmark Differentiating both sides of q =Cv gives:

$$
i = C \frac{dv}{dt}
$$

 \checkmark Capacitors that satisfy the above equation are said to be linear and have straight line plot, as shown below:

Circuit Analysis-II Lecture # 4 Monday 16th April, 18

dt

Current-Voltage Relationship of Capacitor (cont.)

- \checkmark For a non-linear capacitor, the plot of the current-voltage relationship is not a straight line.
- \checkmark The voltage-current relation of the capacitor can be obtained by integrating both sides of the above equation. We get:

$$
v(t) = \frac{1}{C} \int_{-\infty}^{t} i(\tau) d\tau
$$

or

$$
v(t) = \frac{1}{C} \int_{t_0}^{t} i(\tau) d\tau + v(t_0)
$$

 \checkmark Where v(t_o) = q(t_o)/C is the voltage across the capacitor at time t_0 .

Current-Voltage Relationship of Capacitor (cont.)

 \checkmark The instantaneous power delivered to the capacitor is:

$$
p = vi = Cv \frac{dv}{dt}
$$

 \checkmark The energy stored in the electric field that exists between the plates of the capacitor is represented as:

$$
w = \frac{1}{2}Cv^2
$$

Example #1

- \checkmark (a): Calculate the charge stored on a 3-pF capacitor with 20V across it.
- \checkmark (b): Find the energy stored in the capacitor.

Example #3

О

 \checkmark Obtain the energy stored in the capacitor shown below under the dc conditions:

Series & Parallel Capcitors

 \checkmark The equivalent capacitance of series-connected capacitors is the reciprocal of the sum of the reciprocals of the individual capacitances.

Example #4

О

 \checkmark Find the equivalent capacitance seen between terminals a and b of the circuit shown below:

Inductors

Introduction

- \checkmark An inductor is a passive element designed to store energy in its magnetic field.
- \checkmark Inductors find numerous applications in electronic and power systems.
- \checkmark Any conductor of electric current has inductive properties and may be regarded as an inductor.
- \checkmark But in order to enhance the inductive effect, a practical inductor is usually formed into a cylindrical coil with many turns if conducting wire as shown below:

Inductor

- \checkmark An inductor consists of a coil of conducting wire.
- \checkmark If current is allowed to pass through an inductor, it is found that the voltage across the inductor is directly proportional to the time rate of change of the current.
- \checkmark Using the passive sign convention:

$$
v = L\frac{di}{dt}
$$

 \checkmark Where L is the constant of proportionality called the inductance of the inductor.

Inductance

- \checkmark Inductance is the property whereby an inductor exhibits opposition to the change of current flowing through it.
- \checkmark The unit of inductance is the henry (H),named in honor of the American inventor Joseph Henry.
- \checkmark 1 henry equals to 1 volt-second per ampere.
- \checkmark Inductance can be increased by increasing the number of turns of coil, using material with higher permeability as the core, increasing the cross-sectional area or reducing the length of the coil.

Current-Voltage Relationship

Current-Voltage Relation of **Inductors**

 \checkmark The voltage-current relationship for an inductor is:

$$
v = L\frac{di}{dt}
$$

 \checkmark The figure below shows this relationship graphically for an inductor whose inductance is independent of current.

 \checkmark Such an inductor is known as linear inductor. For a nonlinear inductors the plot will not be a straight line because the inductance varies with current.

Current-Voltage Relation of Inductors (cont.)

 \checkmark The current-voltage relationship is obtained as:

Integrating gives:

$$
di = \frac{1}{L}vdt
$$

$$
i = \frac{1}{L} \int_{-\infty}^{t} \nu(\tau) d\tau
$$

or

$$
i = \frac{1}{L} \int_{t_0}^{t} \nu(\tau) d\tau + i(t_0)
$$

 \overline{v} Where i(t₀) is the total current for -∞ < t < t₀ and i(-∞)=0.

Current-Voltage Relation of Inductors (cont.)

- \checkmark The idea of making i(- ∞)=0 is practical and reasonable, because there must be a time in the past when there was no current in the inductor.
- \checkmark The power delivered to inductor is:

$$
p = vi = \left(L\frac{di}{dt}\right)i
$$

 \checkmark The energy stored is:

$$
w = \frac{1}{2} Li^2
$$

Example #5

\checkmark Consider the circuit in following figure.

 \checkmark Under dc conditions, find:

 \checkmark (a): i, v_c , and i₁.

 \checkmark (b): the energy stored in the capacitor and inductor.

Series & Parallel Inductors

Series Inductors

 \checkmark Consider a series connection of N inductors shown below:

 \checkmark The equivalent inductance of series-connected inductors is the sum of the individual inductances.

$$
L_{eq} = L_1 + L_2 + L_3 + \dots + L_N
$$

Parallel Inductors

\checkmark The parallel connection of N inductors is shown below:

 \checkmark The equivalent inductance of parallel inductors is the reciprocal of the sum of the reciprocals of the individual inductances.

$$
\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots + \frac{1}{L_N}
$$

Important Characteristics of the Basic Elements

Example #6

٥

 \checkmark Find the equivalent inductance of the circuit shown below:

Thank You

Circuit Analysis-II **Recent Contact Co**