

Circuit Analysis-II

Capacitors in AC Circuits

Introduction

 \checkmark The instantaneous capacitor current is equal to the capacitance times the instantaneous rate of change of the voltage across the capacitor.

$$
i = C \left(\frac{dv}{dt} \right)
$$

 \checkmark The faster the voltage across a capacitor changes, the greater the current.

Phase relationship of Current and Voltage

 \checkmark When a sinusoidal voltage is applied across a capacitor:

- \checkmark The voltage waveform has a maximum rate of change (dv/dt = max) at the zero crossings.
- \checkmark A zero rate of change (dv/dt = 0) at the peaks.

Phase relationship of Current and Voltage (cont.)

 \checkmark The phase relationship between the current and the voltage for the capacitor can be established from:

$$
i = C \left(\frac{dV}{dt} \right)
$$

 \checkmark When dv / dt = 0, i is also zero because:

$$
i = C \left(\frac{dv}{dt} \right) = C(0) = 0
$$

 \checkmark When dv / dt is a positive-going maximum, i is a positive maximum; when dv / dt is a negative-going maximum, i is a negative maximum.

Phase relationship of Current and Voltage (cont.)

- \checkmark A sinusoidal voltage always produces a sinusoidal current in a capacitive circuit.
- \checkmark The voltage and current relationship is shown below:

Phase relationship of Current and Voltage (cont.)

- \checkmark The current leads the voltage in phase by 90 $^{\circ}$.
- \checkmark This is always true in a purely capacitive circuit.

Capacitive Reactance

Capacitive Reactance

- \checkmark Capacitive reactance is the opposition to sinusoidal current, expressed in ohms.
- \checkmark The symbol for capacitive reactance is $X_{\check{C}}$.
- \checkmark The rate of change of the voltage is directly related to frequency.
- \checkmark The faster the voltage changes, the higher the frequency.
- \checkmark When frequency increases, dv / dt increases, and thus i increases.
- \checkmark When frequency decreases, dv / dt decreases, and thus i decreases.

$$
\begin{vmatrix} \uparrow & \uparrow \\ i = C \big(dv \, / \, dt \big) \end{vmatrix}
$$

$$
i = C(dv/dt)
$$

Capacitive Reactance (cont.)

- \checkmark An increase in i means that there is less opposition to current $\overline{(X_C \text{ is less})}.$
- \checkmark A decrease in i means a greater opposition to current (X_c is greater).
- \checkmark Therefore, X_c is inversely proportional to i and thus inversely proportional to frequency i.e., 1/f.

 \checkmark If dv/dt is constant and C is varied, an increase in C produces an increase in i, and a decrease in C produces a decrease in

$$
\int_{i}^{1} \int_{-C}^{1} (dv/dt) \quad and \quad \int_{i}^{1} = C(dv/dt)
$$

i.

Capacitive Reactance (cont.)

- \checkmark An increase in i means less opposition (X_C is less) and a decrease in i means greater opposition $(X_C$ is greater).
- \checkmark Therefore, X_c is inversely proportional to i and thus inversely proportional to capacitance.
- \checkmark The capacitive reactance is inversely proportional to both f and C, i.e.,

 \checkmark Also,

 $X_c = \frac{1}{c}$ *fC*

$$
X_c = \frac{1}{2\pi fC}
$$

Capacitive Reactance (cont.)

 \checkmark Capacitive reactance X_c is in ohms when f is in hertz and C is in farads and 2π appears in the denominator as a constant of proportionality.

Ohm's Law

 \checkmark The reactance of a capacitor is analogous to the resistance of a resistor, as shown below:

 \checkmark Both are expressed in ohms. Since both R and X_c are forms of opposition to current, ohm's law applies to capacitive circuits as well as to resistive circuits.

$$
I = \frac{V}{X_C}
$$

 \checkmark When applying ohm's law in ac circuits, both the current and the voltage are expressed in the same way i.e., both in rms, both in peak and so on.

Example #1

٥

\checkmark Determine the rms current:

Power in a Capacitor

Instantaneous Power

- \checkmark The product of v and i gives instantaneous power.
- \checkmark Where v or i is zero, p is also zero, when both v and i are positive, p is also positive and when either v or i is positive and the other is negative, p is negative.
- \checkmark When both v and i are negative, p is positive.
- \checkmark Positive values of power indicate that energy stored by the capacitor.
- \checkmark Negative values of power indicate that energy is returned from the capacitor to the source.

True Power

- \checkmark Ideally all of the energy stored by a capacitor during the positive portion of the power cycle is returned to the source during the negative portion.
- \checkmark No net energy is lost due to conversion to heat in the capacitor, so the true power is zero.

Reactive Power

- \checkmark The rate at which a capacitor stores or returns energy is called its reactive power.
- \checkmark The reactive power is a nonzero quantity, because at any instant in time, the capacitor is actually taking energy from the source or returning energy to it.
- $\sqrt{ }$ Reactive power does not represent an energy loss.
- \checkmark The following formulas apply:

$$
P_r = V_{rms} I_{rms}
$$

$$
P_r = \frac{V^2_{rms}}{X_c}
$$

$$
P_r = I_{rms}^2 X_c
$$

Inductors in AC Circuits

Phase Relationship of Current and Voltage

- \checkmark The faster the current through an inductor changes, the greater the induced voltage will be.
- \checkmark A sinusoidal current always induces a sinusoidal voltage in inductive circuits.
- \checkmark Therefore the plot of voltage with respect to the current can be plotted if the points on the current curve at which the voltage is zero and those at which it is maximum are known.
- \checkmark The voltage leads the current by 90°.
- \checkmark The phase relation of an inductor is shown below:

Phase Relationship of Current and Voltage (cont.)

K

Inductive Reactance

Inductive Reactance

- \checkmark Inductive reactance X ¹ is the opposition to sinusoidal current, expressed in ohms.
- \checkmark The symbol for inductive reactance is X_L .

 \checkmark The rate of change of current is directly related to frequency. \checkmark The faster the current changes, the higher the frequency.

Inductive Reactance (cont.)

- \checkmark When frequency increases, di / dt increases, and thus v_{ind} increases.
- \checkmark When frequency decreases, di / dt decreases, and thus v_{ind} decreases.
- \checkmark The induced voltage is directly dependent on frequency, i.e.,

$$
v_{\text{ind}}^{\uparrow} = L(di/dt) \quad \text{and} \quad v_{\text{ind}} = L(di/dt)
$$

 \checkmark If di / dt is constant and the inductance is varied, an increase in L produces an increase in v_{ind} and a decrease in L produces a decrease in v_{ind} .

$$
v_{ind}^{\uparrow} = L(di/dt) \quad and \quad v_{ind} = L(di/dt)
$$

Inductive Reactance (cont.)

 \overline{v} Therefore, X_1 is directly proportional to induced voltage and thus directly proportional to inductance. Hence, $X₁$ is proportional to fL.

$$
X_L = 2\pi fL
$$

 \overline{v} Inductive reactance, X_1 is in ohms when f is in hertz and L is in henries.

Ohm's Law

 \checkmark The reactance of an inductor is analogous to the resistance of a resistor as shown below:

 \checkmark Since inductive reactance is a form of opposition to current, ohm's law applies to inductive circuits as well as to resistive circuits and capacitive circuits and it is stated as follows:

$$
I = \frac{V}{X_L}
$$

Example #3

О

 \checkmark Determine the rms current in figure below:

Power in Inductor

Instantaneous Power

- \checkmark The product of v and i gives instantaneous power.
- \checkmark At points where v or i is zero, p is also zero.
- \checkmark When both v and i are positive, p is also positive.
- \checkmark When either v or I is positive and the other negative, p is negative.
- \checkmark When both v and i are negative, p is positive.

True Power

- \checkmark Ideally all of the energy stored by an inductor during the positive portion of the power cycle is returned to the source during the negative portion.
- \checkmark No net energy is lost due to conversion to heat in the inductor, so the true power is zero.

$$
P_{true} = (I_{rms})^2 R_W
$$

Reactive Power

- \checkmark The rate at which an inductor stores or returns energy is called its reactive power, with the unit of VAR (volt-ampere reactive).
- \checkmark The reactive power is a nonzero quantity because at any instant in time the inductor is actually taking energy from the source or returning energy to it.
- \checkmark Reactive power does not represent an energy loss due to conversion to heat.
- \checkmark The following formulas apply:

$$
P_r = V_{rms} I_{rms}
$$

$$
P_r = \frac{V_{rms}^2}{X_L}
$$

$$
P_r = I_{rms}^2 X_L
$$

Quality Factor (Q) of a Coil

- \checkmark The quality factor (Q) is the ratio of the reactive power in an inductor to the true power in the winding resistance of the coil or the resistance in series with the coil.
- \checkmark It is a ratio of the power in L to the power in R_W.
- \checkmark A formula for Q is as follows:

$$
Q = \frac{reactive\ power}{true\ power} = \frac{I^2 X_L}{I^2 R_W}
$$

 \checkmark The current is the same in L and R_w; thus the I² terms cancel, leaving:

$$
Q = \frac{X_L}{R_W}
$$

Example #4

 \checkmark A 10 V_{rms} signal with a frequency of 1kHz is applied to a 10mH coil with a negligible winding resistance. Determine the reactive power?

Practice Problems

Problem #1

 \checkmark Two series capacitors (one 1µF, the other of unknown value) are charged from a 12V source. The 1µF capacitor is charged to 8V and the other to 4V. What is the value of the unknown capacitor?

Problem #2

 \checkmark A sinusoidal voltage of 20V rms produces an rms current of 100mA when connected to a certain capacitor. What is the reactance?

Problem #3

 \checkmark Determine the total inductance of each circuit shown below:

٥

Thank You