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Fourier Series




Historical Perspective




History

In 1822, the French mathematician J.B.J. Fourier had first studied
the periodic function and published his famous theorem.

It states that any periodic signal can be resolved into sinusoidal
components.

Fourier series is the resulting summation of harmonic sinusoid.
The signal can be in time domain or in frequency domain.

T can be represented either in the form of infinite trigonometric
series or in the form of exponential series.




Introduction




Definition

Fourier Series expansion is used for periodic signals to expand
them in terms of their harmonics which are sinusoidal and
orthogonal to one another.

We have two types of Fourier Series expansion:
% Continuous Time Fourier Series

% Discrete Time Fourier Series
Fourier Series is used for analysis of periodic signals only.

For analysis of non-periodic signals Fourier Transform is used.




Response of LTI Systems




Response of LTI Systems to Complex
Exponential

For analyzing LTI systems, the signals can be represented as a
linear combination of basic signals.

Basic signals possess the following two properties:

<+ The set of basic signals can be used to construct a broad and useful
class of signals.

< Should have simple structure in LTI system response.

Both of these properties are provided by the set of complex
exponential signals in continuous and discrete time.

The response of an LTI system to a complex exponential input is
the same complex exponential with only a change in amplitude.




Response of LTI Systems to Complex
Exponential (cont.)

< For Continuous time: € — H(S)€St where H(s) is a function of s.

< For Discrete time: 7" — H(Z)Zn where H(z) is a function of z.




Eigen-functions of an LTI System

< If the output is a scaled version of its input, then the input function
is called an Eigen-function of the system.

< The scaling factor is called the eigenvalue of the system.




Continuvous Time

< Consider an LTI system with impulse response h(t) and input signal
X(t).

x (1) y(?)
> h(t) >

< Suppose that x(t) = e*t for some s belongs to C, then the output is

iven by:
JHERDY y(1)= fh x(t—7)dt




Continuous Time (cont.)

[ee]

Where H(s) is defined as: H ( )=fh(r)e‘” dt

From the above derivation we see that if the input is x(t) = e*, then
the output is a scaled version y(t) = H(s) est.

est H(S)est
— [ A

Therefore, using the definition of Eigenfunction, we show that:

‘0

» estis an Eigenfunction of any continuous-time LTI system

O/

< H(s) is the corresponding eigenvalue.




Continuous Time (cont.)

<+ Considering the subclass of periodic complex exponentials of the
elwt  belongs to R by setting s=jw, then:

H(s)

_ H(jo)= zh(r)e‘j“” it

s=jw

< H(jw) is called the frequency response of the system.




Discrete Time

< In parallel manner we can show that complex exponential
sequences are Eigenfunctions of discrete-time LTI systems.

z[n] y[n]
—  hn p——

< Suppose tat the impulse response is given by h[n] and the input is
x[n]=z", then the output y[n] is:

y[n]

<

=h[n]*x[n]=§wh[k] (n-k]
(]2 3 Wk = (2) 2




Discrete Time (cont.)

*»» This result indicates:

/

< z"is an Eigenfunction of a discrete-time LTI system

/

< H(z) is the corresponding eigenvalue.

P H(Z)Z"
_ hn] ——>

< Considering the subclass of periodic complex exponentials eJ(zW/Nn
by setting z= e)2™N, we have:

H(Z) e H(efg) = i h[k]e—jgk

k=—o0

< And H(el??) is called the frequency response of the system.




Importance of EigenFunction

<+ The usefulness of Eigenfunctions can be seen from an example.
< Lets consider a signal x(t):

x(t)=ae" +a,e™ +a,e™

< According to the Eigenfunction analysis , the output of each
complex exponential is:

e — H (Sl)eslt




Importance of EigenFunction (cont.)

< From the superposition property the response to the sum is the
sum of the responses, so that:

J/(f) B le(Sl)eylf T dzH(‘yz)ew * 43H(53)6’3’

< The result implies that if the input is a linear combination of
complex exponentials, the output of an LTI system is an infinite
sum of complex exponentials.

<+ More generally, if x(t) is an infinite sum of complex exponentials,

e e]

x(t)= E a.e™

k=—OO




Importance of EigenFunction (cont.)

[ee]

Then the output is: y(1)= E aH (s, )e"

k=—o00
Similarly for discrete-time signals, if:

x|[n]= i a,z;

k=—

then

vin]= > aH ()2

k=—o0

This is an important observation, because as long as we can
express a signal x(t) as a linear combination of Eigenfunctions,
then the output y(t) can be easily determined by looking at the
transfer function. Same goes for discrete-time.

The transfer function is fixed for an LTI system.




Fourier Series of

Continuous-Time Periodic
Signals




Fourier Series of Continuous-Time

< According to the definition of periodic signals: x(t) = x(t+T) with
fundamental period T and fundamental frequency w_ =2m/T.

* We have also discussed two basic signals, the sinusoidal signal:
X(t)=cosw,t and the periodic complex exponential x(t) = elw°t,

Both of these signals are periodic with fundamental frequency w,
and the fundamental period T=2m/w, .

*» Harmonically related complex exponentials:

¢k (t) _ ejka)ot _ ejk(zmT)t,k _

Each harmonic has fundamental frequency which is multiple of w,.




Fourier Series of Continuous-Time
(cont.)

» A Linear combination of harmonically related complex
exponentials: > >

x(t)= 2 a.e” = 2 akejk(zmT)t

k=—0o0 k=—o00
Above equation is also periodic with periodT.
* k=#1have fundamental frequency w, (first harmonic)

k=+N have fundamental frequency Nw, (Nth harmonic)




Continuous-Time Fourier Series
Coefficients

¢ Theorem: The continuous-time Fourier series coefficients a, of the

signal: . . .
x(t) = E a.e”™™,  Synthesis Equation

k=—OO

s given by:

a, =— f x(t)e‘jk“’ot dt, Analysis Equation

T

T

Proof:

Let us consider the signal:




Continuous-Time Fourier Series
Coefficients (cont.)

—jna)ot

< If we multiply ¢

0

on both sides, then we have:

o0

—j”la)()t — Jka)ot —jl’la)()t _ ](k—n)a)ot
x(t)e " = E ae”™ ™" e " = E a.e

| k=

k=—OO

< Integrating both sides from o to T yields: (T is the fundamental

period of x(t) )

T T

[x(t)e ™ di= [

0

o [ T
a, f /=" gy
0

0

(k—n )t
3 g,

| k=0

dt




Continuous-Time Fourier Series
Coefficients (cont.)

% Use Euler’s formula:

T

fe’k ”wotdt—fcos( (k—n)w,t )dt+]fsm( (k=n)w,t)dt

0

< For k#n, cos(k-n)w t and sin(k-n)w,t are periodic sinusoids with
fundamental period (T/|k-n|)

< Therefore: , :
}e]-(k-n)wdtm I if k=n

0 0O otherwise

<+ This result is known as the orthogonality of complex exponentials.




Continuous-Time Fourier Series
Coefficients (cont.)

< Using above equation we have:

T
fx(t)e'j”“’ot dt=Ta,
0

<+ Which is equivalent to: .
1 :
a =— | x(t)e " dt

<» Dc or constant component of x(t):

a, =%fx(t)dt
T




Example #1

< Consider the signal: x(r)=1+%cos2m+sin3m

< The period of x(t) is T=2, so the fundamental frequency is w =2/
T=TI.

< Recall Euler’s formula el = cosB + jsinB, we have:

and a, =0 otherwise




Example #2

<+ Let:

- T
x(7)=1+sin W,/ +2cosw, +cos (Za)of + Z)

<+ Which has fundamental frequency w,.




Conditions for Existence

of Fourier Series




Existence of Fourier Series

<» To understand the validity of Fourier Series representation, lets
examine the problem of approximation a given periodic signal x(t)
by a linear combination of a finite number of harmonically related
complex exponentials.

< That is by finite series of the form:
N

Xy (t) = E a.e’

k=—N
< Let ey(t) denote the approximation error; i.e.,

ey (1)=3(0)=, ()= (1)- 3 are™

k=—N




Existence of Fourier Series (cont.)

» The criterion that we will use is the energy in the error over one

E,(t)= {|eN (1) a

period:

* To achieve min E,, one should define:
1 — jkawgt
a,=— | x(t)e " dt
=7 [0
As N increases, E decreases and as N=» ® E is zero.
If a, =» 00 the approximation will diverge.

Even for bounded a, the approximation may not be applicable for
all periodic signals.




Convergence Conditions of Fourier
Series Approximation

< Energy of signal should be a finite in a period:

{‘x(t)‘z dt < oo

<+ This condition only guarantees E»o.
< It does not guarantee that x(t) equals to its Fourier series at each moment t.




Dirichlet Conditions

Condition#1:

Signal should have finite number of maxima and minima over the
range of time period.

xZ,(t) Xa(t)




Condition #2:

Signal should have finite number of discontinuities over te range of
time period.




Dirichlet Conditions (cont.)

Condition #3:

Signal should be absolutely integrable over the range if time period.




ThankYou!




