Signal & Systems Lecture #6

10th April 18

Fourier Series

Historical Perspective

History

- ◆ In 1822, the French mathematician J.B.J. Fourier had first studied the periodic function and published his famous theorem.
- $*$ It states that any periodic signal can be resolved into sinusoidal components.
- * Fourier series is the resulting summation of harmonic sinusoid.
- \cdot The signal can be in time domain or in frequency domain.
- \cdot T can be represented either in the form of infinite trigonometric series or in the form of exponential series.

Introduction

Definition

- ◆ Fourier Series expansion is used for periodic signals to expand them in terms of their harmonics which are sinusoidal and orthogonal to one another.
- ◆ We have two types of Fourier Series expansion:
	- ❖ Continuous Time Fourier Series
	- ❖ Discrete Time Fourier Series
- $\cdot \cdot$ Fourier Series is used for analysis of periodic signals only.
- \cdot For analysis of non-periodic signals Fourier Transform is used.

Response of LTI Systems

Response of LTI Systems to Complex Exponential

- ❖ For analyzing LTI systems, the signals can be represented as a linear combination of basic signals.
- ❖ Basic signals possess the following two properties:
	- * The set of basic signals can be used to construct a broad and useful class of signals.
	- \cdot Should have simple structure in LTI system response.
- ◆ Both of these properties are provided by the set of complex exponential signals in continuous and discrete time.
- The response of an LTI system to a complex exponential input is the same complex exponential with only a change in amplitude.

Response of LTI Systems to Complex Exponential (cont.)

 \div For Continuous time: e^{st} → $H(s)e^{st}$ where H(s) is a function of s.

◆ For Discrete time: z^n → $H(z)z^n$ where H(z) is a function of z.

Eigen-functions of an LTI System

- \cdot If the output is a scaled version of its input, then the input function is called an Eigen-function of the system.
- \cdot The scaling factor is called the eigenvalue of the system.

Continuous Time

***** Consider an LTI system with impulse response h(t) and input signal $x(t)$.

• Suppose that $x(t) = e^{st}$ for some s belongs to C, then the output is given by: $y(t) = h(t) * x(t) = \int h(\tau) x(t-\tau) d\tau$ −∞ ∞ ∫ ∞

$$
= \int_{-\infty}^{\infty} h(\tau) e^{s(t-\tau)} d\tau
$$

= $e^{st} \left[\int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau \right] = H(s) e^{st} = H(s) x(t)$

Continuous Time (cont.)

- \cdot **Where H(s)** is defined as: $H(s) = \int h(\tau) e^{-s\tau} d\tau$ −∞ ∞ ∫
- From the above derivation we see that if the input is $x(t) = e^{st}$, then the output is a scaled version $y(t) = H(s) e^{st}$.

$$
\begin{array}{c}\n e^{st} \\
\hline\n h(t)\n \end{array}\n \longrightarrow\n \begin{array}{c}\n H(s)e^{st} \\
\hline\n \end{array}
$$

 \cdot Therefore, using the definition of Eigenfunction, we show that:

- ❖ est is an Eigenfunction of any continuous-time LTI system
- \div H(s) is the corresponding eigenvalue.

Continuous Time (cont.)

◆ Considering the subclass of periodic complex exponentials of the $e^{j\omega t}$, ω belongs to R by setting s=j ω , then:

$$
H(s)|_{s=j\omega}=H(j\omega)=\int\limits_{-\infty}^{\infty}h(\tau)e^{-j\omega\tau}\,d\tau
$$

 $\cdot \cdot$ H(jω) is called the frequency response of the system.

Discrete Time

• In parallel manner we can show that complex exponential sequences are Eigenfunctions of discrete-time LTI systems.

◆ Suppose tat the impulse response is given by h[n] and the input is $x[n]=z^n$, then the output $y[n]$ is:

$$
y[n] = h[n] * x[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]
$$

$$
= \sum_{k=-\infty}^{\infty} h[k]z^{[n-k]} = z^n \sum_{k=-\infty}^{\infty} h[k]z^{-k} = H(z)z^n
$$

<u> Where:</u>

$$
H(z) = \sum_{k=-\infty}^{\infty} h[k] z^{-k}
$$

Discrete Time (cont.)

- \cdot This result indicates:
	- ❖ zⁿ is an Eigenfunction of a discrete-time LTI system
	- \div H(z) is the corresponding eigenvalue.

$$
\begin{array}{c}\n \stackrel{n}{\longrightarrow} \\
\hline\n h[n] \quad \stackrel{H(z)z^n}{\longrightarrow}\n \end{array}
$$

• Considering the subclass of periodic complex exponentials e^{-j(2π/N)n} by setting $z = e^{j2\pi/N}$, we have:

$$
H(z)\Big|_{z=e^{j\Omega}} = H(e^{j\Omega}) = \sum_{k=-\infty}^{\infty} h[k]e^{-j\Omega k}
$$

where
$$
\Omega = \frac{2\pi}{N}
$$

* And H(e^{jΩ}) is called the frequency response of the system.

Importance of EigenFunction

- \cdot The usefulness of Eigenfunctions can be seen from an example.
- $\cdot \cdot$ Lets consider a signal $x(t)$:

$$
x(t) = a_1 e^{s_1 t} + a_2 e^{s_2 t} + a_3 e^{s_3 t}
$$

• According to the Eigenfunction analysis, the output of each complex exponential is:

$$
e^{s_1t} \rightarrow H(s_1)e^{s_1t}
$$

$$
e^{s_2t} \rightarrow H(s_2)e^{s_2t}
$$

$$
e^{s_3t} \rightarrow H(s_3)e^{s_3t}
$$

Importance of EigenFunction (cont.)

 \cdot From the superposition property the response to the sum is the sum of the responses, so that:

$$
y(t) = a_1 H(s_1) e^{s_1 t} + a_2 H(s_2) e^{s_2 t} + a_3 H(s_3) e^{s_3 t}
$$

- * The result implies that if the input is a linear combination of complex exponentials, the output of an LTI system is an infinite sum of complex exponentials.
- More generally, if $x(t)$ is an infinite sum of complex exponentials,

$$
x(t) = \sum_{k=-\infty}^{\infty} a_k e^{s_k t}
$$

Importance of EigenFunction (cont.)

 \cdot Then the output is:

$$
y(t) = \sum_{k=-\infty}^{\infty} a_k H(s_k) e^{s_k t}
$$

❖ Similarly for discrete-time signals, if:

$$
x[n] = \sum_{k=-\infty}^{\infty} a_k z_k^n
$$

then

$$
y[n] = \sum_{k=-\infty}^{\infty} a_k H(z_k) z_k^n
$$

- ❖ This is an important observation, because as long as we can express a signal x(t) as a linear combination of Eigenfunctions, then the output $y(t)$ can be easily determined by looking at the transfer function. Same goes for discrete-time.
- \cdot The transfer function is fixed for an LTI system.

Fourier Series of Continuous-Time Periodic **Signals**

Fourier Series of Continuous-Time

- According to the definition of periodic signals: $x(t) = x(t+T)$ with fundamental period T and fundamental frequency $\omega_{0}=2\pi/T$.
- ◆ We have also discussed two basic signals, the sinusoidal signal: $x(t)$ =cos $\omega_0 t$ and the periodic complex exponential $x(t) = e^{j\omega_0 t}$.
- Both of these signals are periodic with fundamental frequency ω_{0} and the fundamental period $T=2\pi/\omega_0$.
- ◆ Harmonically related complex exponentials:

$$
\phi_k(t) = e^{jk\omega_0 t} = e^{jk(2\pi/T)t}, k = 0, \pm 1, \pm 2, \dots
$$

• Each harmonic has fundamental frequency which is multiple of $\omega_{\rm o}$.

Fourier Series of Continuous-Time (cont.)

- * A Linear combination of harmonically related complex exponentials: $x(t) = \sum a_k e^{jk\omega_0 t}$ *k*=−∞ ∞ $\sum a_{k}e^{jk\omega_{0}t} = \sum a_{k}e^{jk(2\pi/T)t}$ *k*=−∞ ∞ ∑
- \clubsuit Above equation is also periodic with period T.
- k= \pm 1 have fundamental frequency ω_{0} (first harmonic)
- $\cdot \cdot$ k=±N have fundamental frequency N ω_{0} (Nth harmonic)

Continuous-Time Fourier Series Coefficients

- \cdot Theorem: The continuous-time Fourier series coefficients a_k of the signal: $x(t) = \sum a_k e^{jk\omega_0 t}$ *k*=−∞ ∞ $\sum a_k e^{jk\omega_0 t}$, *Synthesis Equation*
- $\cdot \cdot$ Is given by:

$$
a_k = \frac{1}{T} \int_{T} x(t) e^{-jk\omega_0 t} dt, \quad \text{Analysis} \quad Equation
$$

- \div Proof:
- ❖ Let us consider the signal:

$$
x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}
$$

Continuous-Time Fourier Series Coefficients (cont.)

 \cdot If we multiply $e^{-jn\omega_0 t}$ on both sides, then we have:

$$
x(t)e^{-jn\omega_0t} = \left[\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0t}\right] e^{-jn\omega_0t} = \sum_{k=-\infty}^{\infty} a_k e^{j(k-n)\omega_0t}
$$

❖ Integrating both sides from o to T yields: (T is the fundamental period of $x(t)$)

$$
\int_{0}^{T} x(t) e^{-jn\omega_0 t} dt = \int_{0}^{T} \left[\sum_{k=-\infty}^{\infty} a_k e^{j(k-n)\omega_0 t} \right] dt
$$

$$
= \sum_{k=-\infty}^{\infty} \left[a_k \int_{0}^{T} e^{j(k-n)\omega_0 t} dt \right]
$$

Continuous-Time Fourier Series Coefficients (cont.)

❖ Use Euler's formula:

$$
\int_{0}^{T} e^{j(k-n)\omega_0 t} dt = \int_{0}^{T} \cos((k-n)\omega_0 t) dt + j \int_{0}^{T} \sin((k-n)\omega_0 t) dt
$$

• For k≠n, cos(k-n)ω_ot and sin(k-n)ω_ot are periodic sinusoids with fundamental period (T/|k-n|)

❖ Therefore: 1 *T e^j*(*k*−*n*)^ω0*^t dt* 0 *T* $\int e^{j(k-n)\omega_0 t} dt =$ 1 *if* $k = n$ 0 *otherwise* $\sqrt{ }$ ⎨ $\overline{}$ \lfloor $\overline{}$

 \cdot This result is known as the orthogonality of complex exponentials.

Continuous-Time Fourier Series Coefficients (cont.)

❖ Using above equation we have:

$$
\int_{0}^{T} x(t) e^{-jn\omega_0 t} dt = Ta_n
$$

❖ Which is equivalent to:

$$
a_n = \frac{1}{T} \int_0^T x(t) e^{-jn\omega_0 t} dt
$$

 $\cdot \cdot$ Dc or constant component of $x(t)$:

$$
a_0 = \frac{1}{T} \int\limits_T x(t) \, dt
$$

Example #1

- \div Consider the signal: $x(t) = 1 +$ 1 2 $\cos 2\pi t + \sin 3\pi t$
- The period of x(t) is T=2, so the fundamental frequency is $\omega_0=2\pi l$ $T = \pi$.
- Recall Euler's formula $e^{j\theta} = \cos\theta + j\sin\theta$, we have:

$$
x(t) = 1 + \frac{1}{4} \left[e^{j2\pi t} + e^{-j2\pi t} \right] + \frac{1}{2j} \left[e^{j3\pi t} - e^{-j3\pi t} \right]
$$

$$
a_0 = 1
$$
, $a_1 = a_{-1} = 0$, $a_2 = a_{-2} = \frac{1}{4}$, $a_3 = \frac{1}{2j}$, $a_{-3} = -\frac{1}{2j}$

and
$$
a_k = 0
$$
 otherwise

Example #2

v Let:

$$
x(t) = 1 + \sin \omega_0 t + 2\cos \omega_0 t + \cos \left(2\omega_0 t + \frac{\pi}{4}\right)
$$

 \cdot Which has fundamental frequency ω_{0} .

Conditions for Existence of Fourier Series

Existence of Fourier Series

• To understand the validity of Fourier Series representation, lets examine the problem of approximation a given periodic signal $x(t)$ by a linear combination of a finite number of harmonically related complex exponentials.

 \cdot That is by finite series of the form:

$$
x_N\left(t\right) = \sum_{k=-N}^N a_k e^{jk\omega_0 t}
$$

• Let $e_N(t)$ denote the approximation error; i.e.,

$$
e_N(t) = x(t) - x_N(t) = x(t) - \sum_{k=-N}^{N} a_k e^{jk\omega_0 t}
$$

Existence of Fourier Series (cont.)

◆ The criterion that we will use is the energy in the error over one period:

$$
E_N(t) = \int_T \left| e_N(t) \right|^2 dt
$$

 \cdot To achieve min E_{N} , one should define:

$$
a_k = \frac{1}{T} \int\limits_T x(t) e^{-jk\omega_0 t} dt
$$

- As N increases, E_N decreases and as N $\rightarrow \infty$ E_N is zero.
- \cdot If a_k $\rightarrow \infty$ the approximation will diverge.

• Even for bounded a_k the approximation may not be applicable for all periodic signals.

Convergence Conditions of Fourier Series Approximation

 \cdot Energy of signal should be a finite in a period:

$$
\int\limits_T \left|x(t)\right|^2 dt < \infty
$$

- \cdot This condition only guarantees $E_N \rightarrow 0$.
- \cdot It does not quarantee that x(t) equals to its Fourier series at each moment t.

Dirichlet Conditions

◆ Condition#1:

◆ Signal should have finite number of maxima and minima over the range of time period.

Dirichlet Conditions (cont.)

- \div Condition #2:
	- ◆ Signal should have finite number of discontinuities over te range of time period.

Dirichlet Conditions (cont.)

 \div Condition #3:

◆ Signal should be absolutely integrable over the range if time period.

Thank You!