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Fourier	Series	



Historical	Perspective	



History	

v  In	1822,	 the	French	mathematician	J.B.J.	Fourier	had	 first	 studied	
the	periodic	function	and	published	his	famous	theorem.	

v  It	 states	 that	 any	 periodic	 signal	 can	 be	 resolved	 into	 sinusoidal	
components.	

v  Fourier	series	is	the	resulting	summation	of	harmonic	sinusoid.	

v  The	signal	can	be	in	time	domain	or	in	frequency	domain.	

v  T	 can	 be	 represented	 either	 in	 the	 form	of	 infinite	 trigonometric	
series	or	in	the	form	of	exponential	series.	

	



Introduction	



Definition	

v  Fourier	 Series	 expansion	 is	 used	 for	 periodic	 signals	 to	 expand	
them	 in	 terms	 of	 their	 harmonics	 which	 are	 sinusoidal	 and	
orthogonal	to	one	another.	

v  We	have	two	types	of	Fourier	Series	expansion:	
v  Continuous	Time	Fourier	Series	

v  Discrete	Time	Fourier	Series	

v  	Fourier	Series	is	used	for	analysis	of	periodic	signals	only.		

v  For	analysis	of	non-periodic	signals	Fourier	Transform	is	used.	



Response	of	LTI	Systems	



Response	of	LTI	Systems	to	Complex	
Exponential	

v  For	 analyzing	 LTI	 systems,	 the	 signals	 can	 be	 represented	 as	 a	
linear	combination	of	basic	signals.	

v  Basic	signals	possess	the	following	two	properties:	
v  The	 set	of	basic	 signals	 can	be	used	 to	 construct	a	broad	and	useful	

class	of	signals.	

v  Should	have	simple	structure	in	LTI	system	response.	

v  Both	 of	 these	 properties	 are	 provided	 by	 the	 set	 of	 complex	
exponential	signals	in	continuous	and	discrete	time.	

v  The	 response	of	 an	 LTI	 system	 to	 a	 complex	 exponential	 input	 is	
the	same	complex	exponential	with	only	a	change	in	amplitude.	



Response	of	LTI	Systems	to	Complex	
Exponential	(cont.)	

v  For	Continuous	time:																														where	H(s)	is	a	function	of	s.	

v  For	Discrete	time:																																				where	H(z)	is	a	function	of	z.		

est →H s( )est

zn →H z( ) zn



Eigen-functions	of	an	LTI	System	

v  If	the	output	is	a	scaled	version	of	its	input,	then	the	input	function	
is	called	an	Eigen-function	of	the	system.		

v  The	scaling	factor	is	called	the	eigenvalue	of	the	system.	

	



Continuous	Time	

v  Consider	an	LTI	system	with	impulse	response	h(t)	and	input	signal	
x(t).	

v  Suppose	that	x(t)	=	est	for	some	s	belongs	to	C,	then	the	output	is	
given	by:	

y t( ) = h t( )∗ x t( ) = h τ( ) x t −τ( )dτ
−∞

∞

∫

= h τ( )es t−τ( ) dτ
−∞

∞

∫

= est h τ( )e−sτ dτ
−∞

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥= H s( )est = H s( ) x t( )



Continuous	Time	(cont.)	

v  Where	H(s)	is	defined	as:	

v  From	the	above	derivation	we	see	that	if	the	input	is	x(t)	=	est,	then	
the	output	is	a	scaled	version	y(t)	=	H(s)	est	.	

v  Therefore,	using	the	definition		of	Eigenfunction,	we	show	that:	
v  est	is	an	Eigenfunction	of	any	continuous-time	LTI	system	

v  H(s)	is	the	corresponding	eigenvalue.	

H s( ) = h τ( )e−sτ dτ
−∞

∞

∫



Continuous	Time	(cont.)	

v  Considering	 the	 subclass	of	periodic	 complex	exponentials	of	 the	
ejωt,	ω	belongs	to	R	by	setting	s=jω,	then:	

v  H(jω)	is	called	the	frequency	response	of	the	system.	

H s( ) s= jω = H jω( ) = h τ( )e− jωτ dτ
−∞

∞

∫



Discrete	Time	

v  In	 parallel	 manner	 we	 can	 show	 that	 complex	 exponential	
sequences	are	Eigenfunctions	of	discrete-time	LTI	systems.	

v  Suppose	tat	the	impulse	response	is	given	by	h[n]	and	the	input	is	
x[n]=zn,	then	the	output	y[n]	is:	

v  Where:	

y n[ ] = h n[ ]∗ x n[ ] = h k[ ] x n− k[ ]
k=−∞

∞

∑

= h k[ ] z n−k[ ]

k=−∞

∞

∑ = zn h k[ ] z−k
k=−∞

∞

∑ = H z( ) zn

H z( ) = h k[ ] z−k
k=−∞

∞

∑



Discrete	Time	(cont.)	

v  This	result	indicates:	
v  zn	is	an	Eigenfunction	of	a	discrete-time	LTI	system	

v  H(z)	is	the	corresponding	eigenvalue.	

v  Considering	the	subclass	of	periodic	complex	exponentials	e-j(2π/N)n	
by	setting	z=	ej2π/N,	we	have:	

v  And	H(ejΩ)	is	called	the	frequency	response	of	the	system.	

H z( ) z=e jΩ = H ejΩ( ) = h k[ ]e− jΩk
k=−∞

∞

∑

where Ω =
2π
N



Importance	of	EigenFunction	

v  The	usefulness	of	Eigenfunctions	can	be	seen	from	an	example.	

v  Lets	consider	a	signal	x(t):	

v  According	 to	 the	 Eigenfunction	 analysis	 ,	 the	 output	 of	 each	
complex	exponential	is:	

x t( ) = a1es1t + a2es2t + a3es3t

es1t →H s1( )es1t

es2t →H s2( )es2t

es3t →H s3( )es3t



Importance	of	EigenFunction	(cont.)	

v  From	 the	 superposition	 property	 the	 response	 to	 the	 sum	 is	 the	
sum	of	the	responses,	so	that:	

v  The	 result	 implies	 that	 if	 the	 input	 is	 a	 linear	 combination	 of	
complex	 exponentials,	 the	 output	 of	 an	 LTI	 system	 is	 an	 infinite	
sum	of	complex	exponentials.	

v  More	generally,	if	x(t)	is	an	infinite	sum	of	complex	exponentials,	

y t( ) = a1H s1( )e s1t +a2H s2( )e s2t +a3H s3( )e s3t

x t( ) = ake
skt

k=−∞

∞

∑



Importance	of	EigenFunction	(cont.)	

v  Then	the	output	is:	

v  Similarly	for	discrete-time	signals,	if:	

v  This	 is	 an	 important	 observation,	 because	 as	 long	 as	 we	 can	
express	 a	 signal	 x(t)	 as	 a	 linear	 combination	 of	 Eigenfunctions,	
then	 the	 output	 y(t)	 can	 be	 easily	 determined	 by	 looking	 at	 the	
transfer	function.	Same	goes	for	discrete-time.	

v  The	transfer	function	is	fixed	for	an	LTI	system.	

y t( ) = akH sk( )eskt
k=−∞

∞

∑

x n[ ] = akzk
n

k=−∞

∞

∑

then

y n[ ] = akH zk( ) zkn
k=−∞

∞

∑



Fourier	Series	of	
Continuous-Time	Periodic	

Signals	



Fourier	Series	of	Continuous-Time	

v  According	 to	 the	 definition	 of	 periodic	 signals:	 x(t)	 =	 x(t+T)	 with	
fundamental	period	T	and	fundamental	frequency	ω0=2π/T.	

v  We	 have	 also	 discussed	 two	 basic	 signals,	 the	 sinusoidal	 signal:	
x(t)=cosω0t	and	the	periodic	complex	exponential	x(t)	=	ejωot.	

v  Both	of	these	signals	are	periodic	with	fundamental	frequency	ω0	
and	the	fundamental	period	T=2π/ω0	.	

v  Harmonically	related	complex	exponentials:	

v  Each	harmonic	has	fundamental	frequency	which	is	multiple	of	ω0.	

φk t( ) = e jkω0t = e
jk 2π /T( )t,k = 0,±1,±2,......



Fourier	Series	of	Continuous-Time	
(cont.)	

v  A	 Linear	 combination	 of	 harmonically	 related	 complex	
exponentials:	

v  Above	equation	is	also	periodic	with	period	T.		

v  k=±1	have	fundamental	frequency	ω0	(first	harmonic)	

v  k=±N	have	fundamental	frequency	Nω0	(Nth	harmonic)	

	

x t( ) = ake
jkω0t

k=−∞

∞

∑ = ake
jk 2π /T( )t

k=−∞

∞

∑



Continuous-Time	Fourier	Series	
Coefficients	

v  Theorem:	The	continuous-time	Fourier	series	coefficients	ak	of	the	
signal:	

v  Is	given	by:	

v  Proof:	

v  Let	us	consider	the	signal:	

x t( ) = ake
jkω0t

k=−∞

∞

∑ , Synthesis Equation

ak =
1
T

x t( )e− jkω0t dt
T
∫ , Analysis Equation

x t( ) = ake
jkω0t

k=−∞

∞

∑



Continuous-Time	Fourier	Series	
Coefficients	(cont.)	

v  If	we	multiply															on	both	sides,	then	we	have:	

v  Integrating	 both	 sides	 from	 0	 to	T	 yields:	 (T	 is	 the	 fundamental	
period	of	x(t)	)		

e− jnω0t

x t( )e− jnω0t = ake
jkω0t

k=−∞

∞

∑
⎡

⎣
⎢

⎤

⎦
⎥e− jnω0t = ake

j k−n( )ω0t

k=−∞

∞

∑

x t( )e− jnω0t dt
0

T

∫ = ake
j k−n( )ω0t

k=−∞

∞

∑
⎡

⎣
⎢

⎤

⎦
⎥dt

0

T

∫

= ak e j k−n( )ω0t dt
0

T

∫
⎡

⎣
⎢

⎤

⎦
⎥

k=−∞

∞

∑



Continuous-Time	Fourier	Series	
Coefficients	(cont.)	

v  Use	Euler’s	formula:	

v  For	 k≠n,	 cos(k-n)ω0t	 and	 sin(k-n)ω0t	 are	 periodic	 sinusoids	 with	
fundamental	period	(T/|k-n|)	

v  Therefore:	

v  This	result	is	known	as	the	orthogonality	of	complex	exponentials.	

e j k−n( )ω0t dt
0

T

∫ = cos k − n( )ω0t( )dt
0

T

∫ + j sin k − n( )ω0t( )dt
0

T

∫

1
T

e j k−n( )ω0t dt
0

T

∫ =
1 if k = n

0 otherwise

⎧
⎨
⎪

⎩⎪



Continuous-Time	Fourier	Series	
Coefficients	(cont.)	

v  Using	above	equation	we	have:	

v  Which	is	equivalent	to:	

v  Dc	or	constant	component	of	x(t):	

x t( )e− jnω0t dt
0

T

∫ = Tan

an =
1
T

x t( )e− jnω0t dt
0

T

∫

a0 =
1
T

x t( )dt
T
∫



Example	#1	

v  Consider	the	signal:	

v  The	period	of	x(t)	 is	T=2,	so	the	fundamental	 frequency	 is	ω0=2π/
T=π.	

v  Recall	Euler’s	formula	ejθ	=	cosθ	+	jsinθ,	we	have:	

x t( ) =1+ 1
2
cos2π t + sin3π t

x t( ) =1+ 1
4
e j2π t + e− j2π t⎡⎣ ⎤⎦+

1
2 j

e j3π t − e− j3π t⎡⎣ ⎤⎦

a0 =1, a1 = a−1 = 0, a2 = a−2 =
1
4
, a3 =

1
2 j
, a−3 = −

1
2 j

and ak = 0 otherwise



Example	#2	

v  Let:		

v  Which	has	fundamental	frequency	ω0.	

x (t ) =1+ sinω0t + 2cosω0t + cos 2ω0t +
π
4

⎛

⎝
⎜

⎞

⎠
⎟



Conditions	for	Existence	
of	Fourier	Series	



Existence	of	Fourier	Series	

v  To	 understand	 the	 validity	 of	 Fourier	 Series	 representation,	 lets	
examine	the	problem	of	approximation	a	given	periodic	signal	x(t)	
by	a	linear	combination	of	a	finite	number	of	harmonically	related	
complex	exponentials.		

v  That	is	by	finite	series	of	the	form:	

v  Let	eN(t)	denote	the	approximation	error;	i.e.,			

xN t( ) = ake
jkω0t

k=−N

N

∑

eN t( ) = x t( )− xN t( ) = x t( )− ake
jkω0t

k=−N

N

∑



Existence	of	Fourier	Series	(cont.)	

v  The	 criterion	 that	we	will	 use	 is	 the	 energy	 in	 the	 error	 over	 one	
period:	

v  To	achieve	min	EN,	one	should	define:	

v  As	N	increases,	EN	decreases	and	as	Nè∞	EN	is	zero.	

v  If	ak	è∞	the	approximation	will	diverge.	

v  Even	for	bounded	ak	the	approximation	may	not	be	applicable	for	
all	periodic	signals.	

EN t( ) = eN t( )
2
dt

T
∫

ak =
1
T

x t( )e− jkω0t dt
T
∫



Convergence	Conditions	of	Fourier	
Series	Approximation	

v  Energy	of	signal	should	be	a	finite	in	a	period:	

v  This	condition	only	guarantees	ENè0.	

v  It	does	not	guarantee	that	x(t)	equals	to	its	Fourier	series	at	each	moment	t.	

x t( )
2
dt

T
∫ <∞



Dirichlet	Conditions	

v  Condition#1:	
v  Signal	 should	 have	 finite	 number	 of	 maxima	 and	 minima	 over	 the	

range	of	time	period.	



Dirichlet	Conditions	(cont.)	

v  Condition	#2:	
v  Signal	 should	 have	 finite	 number	 of	 discontinuities	 over	 te	 range	 of	

time	period.	



Dirichlet	Conditions	(cont.)	

v  Condition	#3:	
v  Signal	should	be	absolutely	integrable	over	the	range	if	time	period.	



Thank	You!	


