

Contents
EXPERIMENT # 01 ... 2

EXPERIMENT # 02 ... 10

EXPERIMENT # 03 ... 18

EXPERIMENT # 04 ... 23

EXPERIMENT # 05 ... 35

EXPERIMENT # 06 ... 49

EXPERIMENT # 07 ... 55

EXPERIMENT # 08 ... 69

EXPERIMENT # 09 ... 83

EXPERIMENT # 10 ... 96

EXPERIMENT # 11 ... 126

1 Page 1

ISRA University Islamabad campus

Signals & Systems Lab

EXPERIMENT # 01: Introduction to
MATLAB

Name of Student: …………………………………..

Roll No.: ……………………………………………

Date of Experiment: ………………………………..

Report submitted on: ………………………………..

Marks obtained: ……………………………………

Remarks: ……………………………………………

Instructor‘s Signature: ……………………………...

•

•

Lab 01: Introduction to Matlab

Lab Experiment 1: Introduction to MATLAB

Objective: This lab provides an introduction to MATLAB in the first part. The lab also

provides tutorial of definitions and Operations on Scalars, Vectors and Matrix in MATLAB and
how can we plot Complex Numbers and Vectors using MATLAB.

Part I: Introduction to MATLAB
Objective: The objective of this exercise will be to introduce you to the concept of mathematical
programming using the software called MATLAB. We shall study how to define variables,

matrices etc, see how we can plot results and write simple MATLAB codes.

Introduction:

 What is MATLAB ?

 • MATLAB is a computer program that combines computation and visualization power
 that makes it particularly useful tool for engineers.

 • MATLAB is an executive program, and a script can be made with a list of MATLAB
 commands like other programming language.

 MATLAB Stands for MATrix LABoratory.

 • The system was designed to make matrix computation particularly easy.
 The MATLAB environment allows the user to:

 • manage variables

 • import and export data
 • perform calculations

 • generate plots

 • develop and manage files for use with MATLAB.

Display Window:

 Graphic (Figure) Window

 Displays plots and graphs

 Created in response to graphics commands.
 M-file editor/debugger window

Create and edit scripts of commands called M-files.

Signals and Systems Lab (EL313-L DEE ISRA University Islamabad

)

•

2 Page 2

This is

^X Yo u

T» «n Maut.

taw T M U B M m m

Th s is

Thrs is

•

•

•

•

•

•

 th e command window,

 ma y type th e

 - TBTU*

 Tw«

 th e command

 th e workspace

Signals and Systems Lab (EL313-L DEE

 yo u

 Kir" (n > <k>

history

ca n enter commands an a

 <—l»—

 window,

which lets

 data,

 it

 all me

Lab 01: Introduction to Matlab

 t.i

 M M

variables yo u ar e using commands after th e "» "

an d th e results ar e displayed here

displays a log of th e

Getting Help:

 type one of following commands in the command window:

help – lists all the help topic

help topic – provides help for the specified topic

help command – provides help for the specified command

help help – provides information on use of the help command

helpwin – opens a separate help window for navigation

lookfor keyword – Search all M-files for keyword

Variables:

 Variable names:

 Must start with a letter

 May contain only letters, digits, and the underscore ―_‖

 Matlab is case sensitive, i.e. one & OnE are different variables.

 Matlab only recognizes the first 31 characters in a variable name.

 Assignment statement:

 Variable = number;

 Variable = expression;

 Example:

 >> tutorial = 1234;
 >> tutorial = 1234

 tutorial =

 1234

 Note: When a semi-colon ―;‖ is placed at the end of each command, the result is not
 displayed.

 ISRA University Islamabad

commands use d

 in

)

•

•

•

•

•

•

J

f

.

symbol

3 Page 3

who:

ans •

•

•

•

•

 >> x(3)
 ans =

 1.5708

The colon notation may be used to address
(start : increment : end)

Lab 01: Introduction to Matlab

 Special variables:

 : default variable name for the result

 pi: π = 3.1415926…………

 eps: ε = 2.2204e-016, smallest amount by which 2 numbers can differ.

 Inf or inf : ∞, infinity

 NaN or nan: not-a-number

 Commands involving variables:

 lists the names of defined variables

whos: lists the names and sizes of defined variables

clear: clears all varialbes, reset the default values of special variables.

clear name: clears the variable name

clc: clears the command window

clf: clears the current figure and the graph window.

Vectors:

A row vector in MATLAB can be created by an explicit list, starting with a left bracket,
entering the values separated by spaces (or commas) and closing the vector with a right

bracket.

A column vector can be created the same way, and the rows are separated by semicolons.

 For example:

>> x = [0 0.25*pi 0.5*pi 0.75*pi pi]
x =

0 0.7854 1.5708 2.3562 3.1416

//x is row vector

//y is column vector

Vector Addressing – A vector element is addressed in MATLAB with an integer index enclosed
in parentheses.

Example:

a block of elements.

start is the starting index, increment is the amount to add to each successive index, and end is the
ending index. A shortened format (start : end) may be used if increment is 1.

Example:

>> x(1:3)
ans =

//1st to 3rd elements of vector x

 0 0.7854 1.5708

Note: MATLAB index starts at 1.

Signals and Systems Lab (EL313-L DEE ISRA University Islamabad

>> y = [0; 0.25*pi; 0.5*pi; 0.75*pi; pi]

element

)

•

•

•

•

•

•

•

•

•

y =
0

0.7854
1.5708

2.3562

3.1416

•

•
//3 rd of vector x

•

•

4 Page 4

6
5

1
4

•

 2
 5

>> h = [2 4 6
1 3 5]

h =

2

Signals and Systems Lab (EL313-L) DEE

4
3

Lab 01: Introduction to Matlab

Some useful commands:

x = start:end create row vector x starting with start, counting by one, ending at
end

x = start:increment:end create row vector x starting with start, counting by increment,
ending at or before end

linspace(start,end,number) create row vector x starting with start, ending at end, having
 number elements

length(x)
y = x‘

dot (x, y)

returns the length of vector x
transpose of vector x

returns the scalar dot product of the vector x and y.

Matrices:
 A Matrix array is two-dimensional, having both multiple rows and multiple columns,

 similar to vector arrays:

it begins with [, and end with]

spaces or commas are used to separate elements in a row

semicolon or enter is used to separate rows.

Example: Let A is an m x n matrix.

th e mai n diagonal

Example:

 >> f = [1 2 3; 4 5 6]
 f =

 1

 Magic Function

 For example you can generate a matrix by entering
 >> m=magic(4)

 It generates a matrix whose elements are such that the sum of all elements in its rows,
 columns and diagonal elements are same

 Sum Function

 You can verify the above magic square by entering
 >> sum(m)

 For rows take the transpose and then take the sum
 >> sum(m‘)

 ISRA Univerity Islamabad

•

•

•

3
6

5 Page 5

Lab 01: Introduction to Matlab

 Diag

 You can get the diagonal elements of a matrix by entering
 >> d=diag(m)

 >> sum(d)
 Matrix Addressing:

 -- matrixname(row, column)

 -- colon may be used in place of a row or column reference to select the entire
 row or column.

 Example:
 >> f(2,3)

ans =
6

>> h(:,1)
ans =

2
1

Where
f =

zeros(n)
zeros(m,n)

ones(n)
ones(m,n)

rand(n)
rand(m,n)

size (A)

returns a n x n matrix of zeros
returns a m x n matrix of zeros

returns a n x n matrix of ones
returns a m x n matrix of ones

returns a n x n matrix of random number
returns a m x n matrix of random number

for a m x n matrix A, returns the row vector [m,n] containing the number of
rows and columns in matrix.

length(A)
Transpose

Identity
Matrix

returns the larger of the number of rows or columns in A.
B = A‘

eye(n) → returns an n x n identity matrix

eye(m,n) → returns an m x n matrix with ones on the main
diagonal and zeros elsewhere.

Addition and
subtraction

Scalar

Multiplication

Matrix
Multiplication

Matrix
Inverse

C = A + B
C = A – B

B = αA, where α is a scalar.

C = A*B

B = inv(A), A must be a square matrix in this case.
rank (A) → returns the rank of the matrix A.

Signals and Systems Lab (EL313-L DEE ISRA University Islamabad

)

2
5

4
3

6
5

1
4

h =
2

1

3

 (6

6 Page 6

6

•

Command

grid on

grid off
grid

title (‗text‘)
xlabel (‗text‘)

ylabel (‗text‘)

text (x,y,‘text‘)

Lab 01: Introduction to Matlab

Matlab Ouput:

Adding new curves to the existing graph, use the hold command to add lines/points to an
existing plot.

hold on – retain existing axes, add new curves to current axes. Axes are rescaled when
necessary.

 hold off – release the current figure window for new plots
Grids and Labels:

Description

 Adds dashed grids lines at the tick marks
 removes grid lines (default)

 toggles grid status (off to on, or on to off)
 labels top of plot with text in quotes

 labels horizontal (x) axis with text is quotes
 labels vertical (y) axis with text is quotes

 Adds text in quotes to location (x,y) on the current axes,
 where (x,y) is in units from the current plot.

Additional commands for plotting

Color of the point or curve

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

Marker of the data Plot line styles

•

Symbol Color
y Yellow
m Magenta
c Cyan
r Red
g Green
b Blue
w White
k Black

Symbol Line Style
− Solid line
: Dotted line

−. Dash-dot line
- - Dashed line

 X X

Symbol Marker
. ●
o ○
x ×
+ +
* *
s □
d ◊
v
^ ∆
h

10 Page 10

y

2.) Find the square root of x, y, and z above using the built in matlab function.

Print you answer in format long and then again in format short e.

3.) Evaluate the following using matlab:

>> save filename.mat s

Saving Your Work:

 sin(π / 3), cos(π / 4), tan(π / 2), arcsin(0), z , ln(x), e

 Anything interesting happen?

Lab 01: Introduction to Matlab

 All the commands, variables created in the Matlab can be saved using following

procedure.

 File -> Save Workspace As -> Choose Directory->Filename.mat -> Click on Save

 In Command Window:

 >> save filename.mat % save all the variables in filename.mat file in Current Directory

 % saves only variable s in filename.mat file.

 >> diary filename.mat %will save all commands and variables in filename file

 >> diary off will close the file and save it as text file containing all the commands

 Loading file

 We can load file by double click on the saved file or in command window type

 >> load filename.mat % all variables will be loaded as saved in previous session.

Exercises:
 1.) Set x = 4, y = 12, z = -2 and find the following

 (a) y/x*z (b) y/(x*z)

 Are these different? Why or why not?

4.) Create the following row vector a = [1,2,3,4,5,6] two different ways.

5.) Make a column vector b that is the transpose of a two different ways.

6.) Create a vector c that is the same as a but whose second component is the last component
 of b.

7.) Create a 4x4 array A

8.) What is A‘?

9.) Set a column vector d equal to the first row of A using ‗:‘ notation and set a vector e
 equal to the first row of A using the column notation.

10.) Create a vector, u, of 15 equally spaced points between

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

 .

1

 0

1

 1 1

−1

 0

 1

1

1

0

1

0

0

1

2

−

 2
and

2

11 Page 11

ISRA University Islamabad Campus

Signals & Systems Lab

EXPERIMENT # 02: Scripts, Functions, Symbolic Math’s Toolbox and

Flow Control using MATLAB

Name of Student: …………………………………..

Roll No.: ……………………………………………

Date of Experiment: ………………………………..

Report submitted on: ………………………………..

Marks obtained: ……………………………………

Remarks: ……………………………………………

Instructor‘s Signature: ……………………………...

12 Page 12

•

Lab 02: Scripts, Functions, Symbolic Math‘s Toolbox and Flow Control using Matlab

Lab Experiment 2: Scripts, Functions, Symbolic Math’s Toolbox

 and Flow Control using MATLAB

Objective: The objective of this lab is to introduce you to writing M-file scripts, creating

MATLAB Functions and reviewing MATLAB flow control like ‗if-elseif-end‘, ‗for loops‘ and
‗while loops‘.

Overview:

MATLAB is a powerful programming language as well as an interactive computational
environment. Files that contain code in the MATLAB language are called M-files. You create

M-files using a text editor, then use them as you would any other MATLAB function or
command. There are two kinds of M-files:

 Scripts, which do not accept input arguments or return output arguments. They operate

 on data in the workspace. MATLAB provides a full programming language that enables

 you to write a series of MATLAB statements into a file and then execute them with a

 single command. You write your program in an ordinary text file, giving the file a name

 of ‗filename.m‘. The term you use for ‗filename‘ becomes the new command that

 MATLAB associates with the program. The file extension of .m makes this a MATLAB

 M-file.

 • Functions, which can accept input arguments and return output arguments. Internal

 variables are local to the function.

If you're a new MATLAB programmer, just create the M-files that you want to try out in the

current directory. As you develop more of your own M-files, you will want to organize them into
other directories and personal toolboxes that you can add to your MATLAB search path. If you

duplicate function names, MATLAB executes the one that occurs first in the search path.

Scripts:

When you invoke a script, MATLAB simply executes the commands found in the file. Scripts
can operate on existing data in the workspace, or they can create new data on which to operate.

Although scripts do not return output arguments, any variables that they create remain in the
workspace, to be used in subsequent computations. In addition, scripts can produce graphical
output using functions like plot. For example, create a file called ‗myprogram.m‘ that contains

these MATLAB commands:

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

clear

 % Create random numbers and plot these numbers

 clc

 r = rand(1,50)

 plot(r)

13 Page 13

Lab 02: Scripts, Functions, Symbolic Math‘s Toolbox and Flow Control using Matlab

Typing the statement ‗myprogram‘ at command prompt causes MATLAB to execute the
commands, creating fifty random numbers and plots the result in a new window. After execution

of the file is complete, the variable ‗r‘ remains in the workspace.

Functions:

 Functions are M-files that can accept input arguments and return output arguments. The names

of the M-file and of the function should be the same. Functions operate on variables within their

own workspace, separate from the workspace you access at the MATLAB command prompt. An
example is provided below:

 The first line of a function M-file starts with the keyword ‗function‘. It gives the function
name and order of arguments. In this case, there is one input arguments and one output

argument. The next several lines, up to the first blank or executable line, are comment lines that

provide the help text. These lines are printed when you type ‗help fact‘. The first line of the help
text is the H1 line, which MATLAB displays when you use the ‗lookfor‘ command or request

help on a directory. The rest of the file is the executable MATLAB code defining the function.
 The variable n & f introduced in the body of the function as well as the variables on the

first line are all local to the function; they are separate from any variables in the MATLAB
workspace. This example illustrates one aspect of MATLAB functions that is not ordinarily

found in other programming languages—a variable number of arguments. Many M-files work
this way. If no output argument is supplied, the result is stored in ans. If the second input
argument is not supplied, the function computes a default value.

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

 function f = fact(n) Function definition line
 % Compute a factorial value. H1 line
 % FACT(N) returns the factorial of N, Help Text
 % usually denoted by N!

 % Put simply, FACT(N) is PROD(1:N). Comment
 f = prod(1:n); Function body

M-File Element Description

Function definition
line (functions only)

Defines the function name, and the number and order of input and
output arguments.

H1 line A one line summary description of the program, displayed when
you request help on an entire directory, or when you use
‗lookfor‘.

Help text A more detailed description of the program, displayed together

with the H1 line when you request help on a specific function

Function or script
body

Program code that performs the actual computations and assigns
values to any output arguments.

Comments Text in the body of the program that explains the internal
workings of the program.

14 Page 14

Lab 02: Scripts, Functions, Symbolic Math‘s Toolbox and Flow Control using Matlab

Flow Control:

Conditional Control – if, else, switch

 This section covers those MATLAB functions that provide conditional program control.
if, else, and elseif. The if statement evaluates a logical expression and executes a group of

statements when the expression is true. The optional elseif and else keywords provide for the
execution of alternate groups of statements. An end keyword, which matches the if, terminates

the last group of statements.

 The groups of statements are delineated by the four keywords—no braces or brackets are
involved as given below

if <condition>
<statements>;

elseif <condition>
<statements>;

else
<statements>;
end

It is important to understand how relational operators and if statements work with matrices.
When you want to check for equality between two variables, you might use

if A == B, ...

This is valid MATLAB code, and does what you expect when A and B are scalars. But when A
and B are matrices, A == B does not test if they are equal, it tests where they are equal; the result
is another matrix of 0's and 1's showing element-by-element equality. (In fact, if A and B are not

the same size, then A == B is an error.)

The proper way to check for equality between two variables is to use the isequal function:
if isequal(A, B), ...

isequal returns a scalar logical value of 1 (representing true) or 0 (false), instead of a matrix, as
the expression to be evaluated by the if function.

Using the A and B matrices from above, you get

Here is another example to emphasize this point. If A and B are scalars, the following program
will never reach the "unexpected situation". But for most pairs of matrices, including our magic

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

ans =

 >>A = magic(4);

>>B = A;

>>B(1,1) = 0;

>>A == B

0
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

 >>isequal(A, B)

 ans =
0

15 Page 15

Lab 02: Scripts, Functions, Symbolic Math‘s Toolbox and Flow Control using Matlab

squares with interchanged columns, none of the matrix conditions A > B, A < B, or A == B is
true for all elements and so the else clause is executed:

Several functions are helpful for reducing the results of matrix comparisons to scalar conditions
for use with if, including ‗isequal‘, ‗isempty‘, ‗all‘, ‗any‘.

Switch and Case:

The switch statement executes groups of statements based on the value of a variable or

expression. The keywords case and otherwise delineate the groups. Only the first matching case
is executed. The syntax is as follows

switch <condition or expression>
case <condition>

 <statements>;

…

case <condition>
…

otherwise
 <statements>;

end

There must always be an end to match the switch. An example is shown below.

Unlike the C language switch statement, MATLAB switch does not fall through. If the first case
statement is true, the other case statements do not execute. So, break statements are not required.

For, while, break and continue:

This section covers those MATLAB functions that provide control over program loops.

for:

The ‗for‘ loop, is used to repeat a group of statements for a fixed, predetermined number of
times. A matching ‗end‘ delineates the statements. The syntax is as follows:

for <index> = <starting number>:<step or increment>:<ending number>
 <statements>;

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

'greater'

A < B

A == B

else

end

 if A > B

 elseif
 'less'
 elseif
 'equal'

 error('Unexpected situation')

 switch rem(n,2) % to find remainder of any number ‘n’

case 0

 disp(‘Even Number’) % if remainder is zero
 case 1

 disp(‘Odd Number’) % if remainder is one
 end

end

16 Page 16

Lab 02: Scripts, Functions, Symbolic Math‘s Toolbox and Flow Control using Matlab

for n = 1:4
number

The semicolon terminating the inner statement suppresses repeated printing, and the r after the
loop displays the final result.

It is a good idea to indent the loops for readability, especially when they are nested:

while:

The ‗while‘ loop, repeats a group of statements indefinite number of times under control of a
logical condition. So a while loop executes atleast once before it checks the condition to stop the

execution of statements. A matching ‗end‘ delineates the statements. The syntax of the ‗while‘
loop is as follows:

while <condition>
<statements>;

end

Here is a complete program, illustrating while, if, else, and end, that uses interval bisection to
find a zero of a polynomial:

The result is a root of the polynomial x - 2x - 5, namely x = 2.0945. The cautions involving
matrix comparisons that are discussed in the section on the ‗if‘ statement also apply to the while

statement.
break:

The break statement lets you exit early from a ‗for‘ loop or ‗while‘ loop. In nested loops, break
exits from the innermost loop only.

continue:

The continue statement passes control to the next iteration of the for loop or while loop in which
it appears, skipping any remaining statements in the body of the loop. The same holds true for

continue statements in nested loops. That is, execution continues at the beginning of the loop in
which, the continue statement was encountered.

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

 r(n) = n*n; % square of a

 end

r

= 1:m
= 1:n

end
end

 for i
 for j
 H(i,j) = 1/(i+j);

j=1;

end

while (j<=4)

 a(j)=10*j;

j=j+1;

x

 3

 a=0; b=0;
for i=1:10,

if(i==6)
break;

end
a(i)=i;

end
a

17 Page 17

Lab 02: Scripts, Functions, Symbolic Math‘s Toolbox and Flow Control using Matlab

Symbolic Math’s Toolbox:

Overview:

Symbolic Math Toolbox™ and Extended Symbolic Math Toolbox™ software incorporates

symbolic computation into the numeric environment of MATLAB® software. These toolboxes

supplement MATLAB numeric and graphical capabilities with several other types of

mathematical computation.

Symbolic Object:

Symbolic Math Toolbox™ software defines a new MATLAB® data type called a symbolic
object. Internally, a symbolic object is a data structure that stores a string representation of the

symbol. Symbolic Math Toolbox software uses symbolic objects to represent symbolic variables,
expressions, and matrices.

The following example illustrates the difference between a standard MATLAB data type, such as
double, and the corresponding symbolic object. The MATLAB command

sqrt(2)

returns a floating-point decimal number:
ans =

 1.4142

On the other hand, if you convert 2 to a symbolic object using the sym command, and then take
its square root by entering

a = sqrt(sym(2))
the result is

a =
2^(1/2)

MATLAB gives the result 2^(1/2), which means 21/2, using symbolic notation for the square

root operation, without actually calculating a numerical value. MATLAB records this symbolic
expression in the string that represents 2^(1/2). You can always obtain the numerical value of a

symbolic object with the double command:

double(a)
ans =

 1.4142

Notice that the result is indented, which tells you it has data type double. Symbolic results are
not indented.

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

 for j=1:10,
if(j==6)

continue;
end
b(j)=j;

end
b

18 Page 18

The command

enter the command
subs(f, x, 3)

This returns
ans =

9*y+15*y^(1/2)

On the other hand, to substitute y = 3, enter

returns
f =

a+b
Substitution:

You can substitute a numerical value for a symbolic variable using the subs command. For
example, to substitute the value x = 2 in the symbolic expression,

f = 2*x^2 - 3*x + 1

enter the command

>>subs(f, y, 3)
ans =

3*x^2+5*x*3^(1/2)
If you want to substitute x=2, and y=3, enter

Lab 02: Scripts, Functions, Symbolic Math‘s Toolbox and Flow Control using Matlab

If you set a variable equal to a symbolic expression, and then apply the syms command to the
variable, MATLAB® software removes the previously defined expression from the variable. For

example,

>>subs(f,2)

This returns f (2):
ans =

 3

When your expression contains more than one variable, you can specify the variable for which
you want to make the substitution. For example, to substitute the value x = 3 in the symbolic

expression,

>>subs(f,{x,y},{2,3})
ans =

 29.3205
Differentiation:

To illustrate how to take derivatives using Symbolic Math Toolbox™ software, first create a
symbolic expression:

diff(f)

differentiates f with respect to x:
ans =

5*cos(5*x)

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

b >>syms a

>>f = a + b

x y >>syms

>>f = x^2*y + 5*x*sqrt(y)

 syms x

f = sin(5*x)

19 Page 19

ISRA University, Islamabad campus

Signals & Systems Lab

EXPERIMENT # 03: Signals and their
Classifications

Name of Student: …………………………………..

Roll No.: ……………………………………………

Date of Experiment: ………………………………..

Report submitted on: ………………………………..

Marks obtained: ……………………………………

Remarks: ……………………………………………

Instructor‘s Signature: ……………………………...

23 Page 23

Lab 03: Signals and their Classifications using Matlab

Example of Analog Signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.
Time (pi Units)

We can also plot analog signal using stem command.

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

8

%Example of Discrete Time Analog Signal
A=2; %Amplitude
w=0.1; %Frequence
phase=pi; %Phase
n=(0:100); %Time axis
stem(n,A*sin(w*n+phase));
title('Example of Analog Signal');
xlabel ('Sample Number');
ylabel ('Amplitude');

27 Page 27

0
04^d i 0 0

0
0

6 0 0

Lab 03: Signals and their Classifications using Matlab

Example of Analog Signal

 -
0 10 20 30 40 50 60 70 80 90 100
 Sample Number

Digital Signal:
Digital signal is the one which can take countable finite values in range.

Using MATLAB we can plot digital signal using stem of plot commands for example a random
bipolar data.

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

%Digital Signal Example
d=round(rand(1,100)); %Random Values
bd=2*d-1; %binary data
phase=pi; %Phase
n=1:100; %Time axis
stem(n,bd);
title('Example of Digital Signal');
xlabel ('Time');
ylabel ('Amplitude');

0
0 0

0
0

0
0

0
0

0

0

0

1

5 " 0
0

0
0

0
0

0
0

0

0

0

0

0
0

0

0

0

5 "
0

0

0

0
0

0
0

0
0

0
0

0

.0

0
0

0
0

0
0

0
0

0

0

0

0
0

0
0

0
0

0
0

0

0

0

0
0

0
0

0
0

0
0

0

28 Page 28

© — 0 6

1 iQ (TXTXTXTXT) • Q Q Q ©-i—0000

%Digital Signal Example

 G O O SQO -

A=1; %Amplitude

phase=pi; %Phase

O oo o

Lab 03: Signals and their Classifications using Matlab

Example of Digital Signal

 66666666—&&b -4y

Square wave is an another example of Digital signal.

f=2; %Frequence

t=(0:0.01:2*pi)/pi; %Horizontal time axis

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

plot(t,A*square(2*pi*f*t+phase));

title('Example of Digital Signal');

 ooo — o

axis([-0.1,2.1,-1.1,1.1]);

xlabel ('Time (pi Units)');

 OOP —i—o

 50
Time

OO O 6

ylabel ('Amplitude');

 ooo —o-

 eee-g

o OOOiOO 0 00

0.8 H

0.6 H

0.4 H

0.2 H

o

QJ
3
t
£ <

-0.2 h

-0.4 h

-0.6 h

-0.8 h

-1 -e - OO O O O OO O O S
10 20

© — 6
1

0 0
30

O QKXX> 6 O
40 60 > 006 1

6 000 6
70 80 90

b
10 0

29 Page 29

one=0;two=0;three=0;four=0;five=0;six=0;%Possible Outcomes

5) Deterministic vs. Random Signals

function [xe,xo,m]=evenodd(x,n)

 error('x is not real sequence');

4) Even vs. Odd Signals

end

exp=ceil(6*rand(1,1000)); %1000 rolls of dice

m=-fliplr(n);

nm=n(1)-m(1);

Lab 03: Signals and their Classifications using Matlab

If x(n)=x(-n) then signal is called even signal,

Any signal can be decomposed into its even and odd part using following MATLAB function

if any (imag(x)~=0)

m1=min(m,n); m2=max(m,n); m=min(m1):max(m2);

n1=1:length(n);

A phenomena is called random, if the outcome of the experiment is uncertain. However, random
phenomenon often follow certain recognizable patterns. This long-run regularity of random

process can be described mathematically.

Example: Rolling a dice 1000 times.

for i=1:1000 %Counting each outcome

 one=one+1;

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

 end
 if(a(i)==2)
 two=two+1;
 end
 if(a(i)==3)
 three=three+1;
 end
 if(a(i)==4)
 four=four+1;
 end
 if(a(i)==5)
 five=five+1;
 end
 if(a(i)==6)
 six=six+1;
 end

%Probability of each outcome
end

probDice(1)=one/1000;
probDice(2)=two/1000;

probDice(3)=three/1000;

probDice(5)=five/1000;

x1=zeros(1,length(m));

probDice(4)=four/1000;

probDice(6)=six/1000;

x1(n1+nm)=x;

xe=0.5*(x+fliplr(x));

stem(probDice);%Plot each outcome

x=x1;

xo=0.5*(x-fliplr(x));

 if(a(i)==1)

axis([0 7 0 0.25]);

31 Page 31

ISRA University Islamabad,Campus

Signals & Systems Lab

EXPERIMENT # 04: Operations on the
signals

Name of Student: …………………………………..

Roll No.: ……………………………………………

Date of Experiment: ………………………………..

Report submitted on: ………………………………..

Marks obtained: ……………………………………

Remarks: ……………………………………………

Instructor’s Signature: ……………………………...

34 Page 34

% Time Delay/ Time Shifting

 t=-10:inc:10;

 t0=2; % Shift Units

signal xt ,

a=2; % Amplitude

() a shifted signal will be of the form y t

x=a*sin(2*pi*f*t);

() = −to) where to (

 y=a*sin(2*pi*f*(t-t0));
subplot(311);
hold on;
plot(t,x);
plot(t,y,'r');
title('Original and Shifted Signal');

subplot(312);

title('Original SIgnal');

 x t

ft) is the signal which is

Experiment 4: Operations on Signals

A single is classified with respect to its domain and range. Similarly operations on signals are

classified into two categories.

1. Operations on domain

2. Operations on Range

Both categories will be dealt in the current laboratory.

1. Operations on Domain

Domain operations are those which involve time axis or integer axis as main focus of

operations. Domain operations are classified into following four categories.

1. Time Shifting

2. Time Scaling

3. Time Reversal

4. Sampling

 1. Time Shifting

 Time Shift or delay operation shifts the signals to the desired delay. Given a

desired to be shifted by an

plot(t,x);

subplot(313);

title('Shifted SIgnal');

is the delay or

shift in time domain. Let Asin(2

amount to . Here is the Matlab code for it.

inc=0.1;

f=0.1;

plot(t,y);

35 Page 35

()

{ (()

If we let m nk

For discrete signal each sample of xn is shifted by an amount k to obtain the shifted sequence

 yn .

y n = −)}

= − then n mk

(+=

 Matlab code for the function of time shift operation is as follows:

function [y,n]=sigshift(x,m,n0)

2. Time Scaling

Operation of time scaling scales the time axis to a certain scale resulting in increasing or

decreasing the frequency of the signal which compresses or expands the signal on time

domain.General expression for the time scaled output is given below.

y t = (

Let Asin(2

= +

n=m+n0;

)

xn k

 and we get

y m k

y=x;

 ft) is the original signal on time scale. We scale the t domain by amount alpha and

beta. Alpha scaled signal will be compresses due to increment in frequency while beta scaled

signal will be expanded. Exampled is coded below.

Original and Shifted Signal

()

()

{ ()} xm

) x t

36 Page 36

%time Scaling

t=-10:inc:10;

alpha=2; % Compression Units

beta=0.5; % Expension units

y=a*sin(2*pi*f*(alpha*t));

Original Signal

Time scaled Compressed Signal

Time Scaled Expanded Signal

a=2; % Amplitude

x=a*sin(2*pi*f*t);

z=a*sin(2*pi*f*(beta*t));

subplot(311);

title('Original Signal');
plot(t,x);

subplot(312);

title('Time scaled Compressed SIgnal');
plot(t,y);

subplot(313);

title('Time Scaled Expanded SIgnal');

inc=0.1;

f=0.1;

plot(t,z);

37 Page 37

inc=0.1;
t=-10:inc:10;

a=2; % Amplitude

3. Time Reversal

 Time Reversal operation flips each sample of the signal about t=0 or n=0 to

 obtain a folded sequence.

() = −

In Matlab fliplr(x) function is used to flip the sample values and –fliplr(x) is used to flip

the indices.

f=0.1;

x=a*sin(2*pi*f*t);

rt=-1*fliplr(t);

subplot(311);

plot(t(l/2:l),x(l/2:l));

Original and reflected Signal

-10 -8 -6 -4 -2 0 2 4 6 8

Reflected/flipped Signal

-10 -8 -6 -4 -2 0 2 4 6 8

rx=fliplr(x);

l=length(x);

hold on;

plot(rt(1:l/2),rx(1:l/2),'r');
title('Original and reflected Signal');

subplot(312);

title('Original SIgnal');
plot(t,x);

subplot(313);
plot(rt,rx);
title('Reflected/flipped SIgnal');

yn { ()} x n

38 Page 38

% Sampling of single frequency component

fs=10*f; %Sampling frequency

Let x = sin(2

function [y,n]=sigfold(x,m)

A Matlab function to implement the signal flipping is given below.

y=fliplr(x) %flips the amplitude levels

4. Sampling

Sampling is the reduction of a continuous signal to a discrete signal. A common example
is the conversion of a sound wave (a continuous signal) to a sequence of samples (a

discrete-time signal).

A sample refers to a value or set of values at a point in time and/or space.

 ft) be the signal with highest frequency component f. We sample the

signal at different rates as follows.

ts=1/fs; % Sampling Interval

x=sin(2*pi*f*t);
t=-1:ts:1;

stem(t,x);

(!) <j

n=-1*fliplr(n) %flips the indices on negative sides

 >

0.2 0.4 0.6 0.8

f=1;

1

0.8

0.6

0.4

0.2

00 -

-0.2 -

-0.4 -

-0.6 -

-0.8 -

0 ©

ffi

0 ©

0

-e -

6

0

- 0

6 - J

- 1
-1 -0.8

39 Page 39

% Sampling of single frequency component at different rates

fs1=2*f; %Sampling frequency
f=10;

fs2=10*f;

fs3=0.5*f;

ts2=1/fs2;
ts3=1/fs3;

t1=-1:ts1:1;

t3=-1:ts3:1;

x2=sin(2*pi*f*t2);

t2=-1:ts2:1;

x1=sin(2*pi*f*t1);

x3=sin(2*pi*f*t3);
subplot(311); stem(t1,x1);

title('sampling at double rate');

title('sampling at 10 times frequency');

title('sampling at 0.5 times frequency');

"5

x -jo"14

3

^

Following example shows the sampling of the given signal at different rates. The output graph
shows how sampling rate predicts the signal behavior and loss of information.

ts1=1/fs1; % Sampling Interval

subplot(312);stem(t2,x2);

subplot(313);stem(t3,x3);

sampling at double rate

A „

? TT T

-1 -0.8 -0.6 -0.4 -0.2 0 0. 2 0.4 0.6 0. 8

sampling at 10 times frequency

-1 -0.8 -0.6 -0.4 -0.2 0 0. 2 0.4 0.6 0.8 1

 sampling at 0.5 times frequency

 5
 ©

-1 -0.8 -0.6 -0.4 -0.2 0 0. 2 0.4 0.6 0.8 1

 1

L I

x 10
• 1 4

0.5 h

0 a s o
<i> 4

-0.5 h i

0 A

6

 A" A

0. 5 h

 0

-0.51 -

•e -
I ~ 0

40 Page 40

% Amplitude Scaling

amplified or attenuated. Given a signal x = A sin(2

t=-1:0.01:1;

a=1; % Amplitude
alpha=2; % Amplitude scale

beta=0.5; % Attenuated scale

y=alpha*sin(2*pi*f*t);
x=a*sin(2*pi*f*t);

z=beta*sin(2*pi*f*t);

subplot(311);

title('Original Signal');

Operations on Range

Range operations involve amplitudes of the signal as major focus of operations. They are

classified as

1. Amplitude Scaling

2. Addition of Signals

3. Subtraction of signals

4. Multiplication of Signals

5. Derivative of signals

1. Amplitude Scaling

Amplitude scaling rescales the amplitude of the signal. As a result signal may be

 ft) where A is the amplitude of the signal.

We can rescale the amplitude by some constant multiplier alpha or beta. Amplitude scaled output will

be

y = {A sin(2

Code given below scales the amplitude by constant alpha and beta which amplifies and
attenuate the signal respectively.

plot(t,x);

subplot(312);

title('Amplified Signal');

title('Attenuated SIgnal');

plot(t,y);

subplot(313);
plot(t,z);

ft)}

f=1;

41 Page 41

2() }

% Addition of sgnals

{ 1 } { 2() () } { 1 ()

Original Signal

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.

Attenuated Signal

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

A Matlab function to implement the Amplitude scaling is given

below.

function y=sigscale(x,alpha)

2. Signal Addition

This is a sample by sample addition given by

xn + = +

It is implemented in Matlab using + operator however this requires the lengths of the vectors to

be same. But if the signals are of different lengths or if the sample positions are different for

same length sequences, then we cannot directly use the ‗+ ‗operator. We first have to augment

the x1(n) and x2(n) so that we have the same position vector and hence the same length. This

involves MATLAB indexing operations. Logical operators of ‗&‘,‘<‘, :>‘ and find functions are

used to make x1(n) and x2(n) of same lengtha. The following function called sigadd performs

the said operation.

function [y,n]=sigadd(x1,n1,x2,n2)

y=alpha*x;

xn x n

n=min(min(n1),min(n2)):max(max(n1),max(n2));

x n

8

42 Page 42

% Multiplication of sgnals

And x = 56 78

% Subtraction of sgnals

And x = 56 78

y1=zeros(1,length(n)); %initialization

y1(find((n>=min(n1)) & (n<=max(n1))==1))=x1;

] 2 [

] 2 [

function [y,n]=sigmul(x1,n1,x2,n2)

 having indices n =[1 : 4]

function [y,n]=sigsub(x1,n1,x2,n2)

 having indices n =[1 : 4]

2

2

n=min(min(n1),min(n2)):max(max(n1),max(n2));

n=min(min(n1),min(n2)):max(max(n1),max(n2));

y2=y1;

y2(find((n>=min(n2)) & (n<=max(n2))==1))=x2;
y=y1+y2;

Example:

3] having indices as n = −

To add the sequences, we use the function as below.

 Sequence/Signals subtraction is similar to addition of signals except the function

name and operator sign. Example is given below.

y1=zeros(1,length(n));

y1(find((n>=min(n1)) & (n<=max(n1))==1))=x1;

Example:

3] having indices as n = −

To subtract the sequences, we use the function as below.

>> [y,n]=sigsub(x1,n1,x2,n2)

4. Signal Multiplication

 Multiplication of signals or sequences involves sample by sample multiplication.

After making the lengths of the vectors same, we multiply the signals using ‗.‘ (dot) operator.

Here is the example.

y1=zeros(1,length(n)); %initialization

y1(find((n>=min(n1)) & (n<=max(n1))==1))=x1;

y2(find((n>=min(n2)) & (n<=max(n2))==1))=x2;

y2(find((n>=min(n2)) & (n<=max(n2))==1))=x2;

>> [y,n]=sigadd(x1,n1,x2,n2)

3. Signal Subtraction

y2=y1;

y=y1-y2;

y2=y1;

y=y1.*y2; % Element wise multiplication

Let 1 x = [1 2 1 [1 : 1]

Let 1 x = [1 2 1 [1 : 1]

43 Page 43

x = t,

%Derivative of signal

And x = 56 78] 2 [

syms x y t f

 having indices n =[1 : 4] 2

x=sin(t);
y=diff(x);

subplot(211);

subplot(212);

Example:

3] having indices as n = −

To multiply the sequences, we use the function as below.

>> [y,n]=sigmul(x1,n1,x2,n2)

5. Derivative of Signal

 Derivative of a given signal is calculated using symbolic Mathematics. Following is the example
to find the derivative of the signal.

ezplot(t,x); %command to plot in syms mode

ezplot(t,y);

 y = sin(t)

Let 1 x = [1 2 1 [1 : 1]

x

44 Page 44

c.

a.

a.

2) () () n 2() n xn xn

a) x n

1. Let xn =

Exercise

{1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2,1} . Determine and plot the following sequences.

1() = −− +

2. Write a Matlab function named multioperations which returns the following output on

 graph simultaneously.

 Amplitude scaled signal

b. Time Scaled signal

Time Shifted Signal

Alpha, beta, gamma are the variables used for defining the scales for shifting, time

scaling and amplitude scaling respectively. Take the input signal A sin(2 f n +) . Alpha,

beta and gamma must be taken from user on run time.

3. Write a Matlab function named multioperators which returns the following output on

 graph simultaneously.

 Sum of the signals

b. Difference of the signals

 Product of the signals

Take input from user about the operation. Then use switch statement to perform the

respective operations. Use Input() function to take input from the user.

2 xn (

(3 x = − + −

()

5) 3 xn (4)

b) x

c.

45 Page 45

ISRA University Islamabad, Campus

Signals & Systems Lab

EXPERIMENT # 05: Basic
Signals

Name of Student: …………………………………..

Roll No.: ……………………………………………

Date of Experiment: ………………………………..

Report submitted on: ………………………………..

Marks obtained: ……………………………………

Remarks: ……………………………………………

Instructor’s Signature: ……………………………...

__

46 Page 46

()

function [x,n]=impulsesig(l,no)

Signals and System

Lab 5|| Basic Signals

Objective:

 This lab is about the basic sequences and signals and their use in generating other

sequences. Followings are the signals that we will study in this lab.

1. Unit Impulse

2. Unit Step

3. Exponential Signals

4. Unit Ramp

5. Rectangular Pulse (Rect Signal)

1. Unit Impulse

Unit Impulse is defined as follow

10

00
The impulse exists only on the origin point (zero

we implement the sequence as follows.

n=-l:l; % defines n axis in symmetric length

Example:

In Command window we call this function as

[x,n]=impulsesig(6,2)

Stem(n,x)

And following result is produced.

__

x=zeros(1,length(n)); %initialization

th

n =

n ≠
n =

 index) and is zero elsewhere. In Matlab

x(l+no+1)=1;

47 Page 47

function [x,n]=impseq(n0,n1,n2)

The above code works by creating a symmetric axis about zero that may not be the case

always. In case where different length of the axis is required and impulse is to be placed in

same pattern, we do it as follows.

%Generates x(n)=delta(n-n0); n1<=n<=n2

x=[(n-n0)==0];

Example:

In command Window, let we want a pulse at n0=2 whereas our

axis starts from -2 and ends at 6.

We call this function as

[x,n]=impseq(-2,6,1);

Stem(n,x)

Following result is produced.

__

n=n1:n2;

48 Page 48

()

()

function [x,t]=contimpulse(l,n0,inc)

x=zeros(1,length(t));

0 t = otherwise

10

10

00

t=-l:inc:l;

x((l+n0)/inc+1)=1;

Continuous unit impulse is defined as below

t =

Shifted impulse is given below.

t =

t −=

Matlab code for the CT unit impulse is given below.

The t axis is produced in same symmetric manner except for the difference that it has been

divided now in small parts, defined by the variable inc that makes the domain comprising

of several elements of interval making the signal continuous. Changing the inc value will

change the shape of the impulse signal. Small value will give a smoother shape of the

signal.

In command window we call this function as:
[x,t]=contimpulse(6,2,0.01);

Plot(t,x)

Output produced is as follows.

__

t =

t ≠

to

1

0.9 I-

0.8 -

0.7 -

0.6 -

0.5 -

0.4 -

0.3 -

0.2 -

0.1 -

0

49 Page 49

$

()

The same can be done in the following way.

function [x,t]=cuifunct(l,no,inc)
t=-l:inc:l;

 x=[zeros(1,(l+no)/inc) 1 zeros(1,(l-no)/inc)]

2. Unit Step Sequence

Unit Step signal is defined as follows

10

00

The signal has one amplitude on positive axis starting from zeroth index. Matlab code for the said
signal is given below.

function [x,n]=dus(l,no)

The code produces the symmetric axis in the same way as for the unit impulse. Only
difference is that now a vector of 1s is placed as amplitude in place of single impulse.

In command window run the following example.
[x,n]=dus(6,1);
Stem(n,x)
Following output will be produced.

 G

For non-symmetric n axis we can write the code as follows.

__

n=-l:l;
len=length(n);
x=zeros(1,length(n));

n ≥

n <
n =

x(l+no+1:len)=1;

end

1 r

0.9 -

0.8 -

0.7 -

0.6 -

0.5 -

0.4 -

0.3 -

0.2 -

0.1 -

 9 © -te -

r n
-6 -e - -4 -e - -e -

-2
-e -

50 Page 50

function [x,n]=step(n0,n1,n2)

x=[(n-n0)>=0];

Example: let no=1; n1=-2; and n2= 10;

[x,n]=step(no,n1,n2);

Stem(n,x)

We will see the following output.

Continuous Unit step signal is defined as follows.

µ()
10

00

Matlab code for implementing unit step in continuous domain is given below.

function [x,t]=contstep(l,n0,inc)

x((l+n0)/inc+1:len)=1;

Example:
[x,t]=contstep(6,1,0.01);
Plot(t,x);
Axis([-10 10 -2 2]);

__

t=-l:inc:l;
len=length(t);

©

n=n1:n2;

end

 S » — e — e —

t ≥=

 t <
t =

x=zeros(1,len);

1 r

0.9 -

0.8 -

0.7 -

0.6 -

0.5 -

0.4 -

0.3 -

0.2 -

0.1 -

© © — 0

06
-2 -e - 10

51 Page 51

n 10 0

n=0:10;

Output is given below

The same can be done using following approach.

function [x,t]=cusfunct(l,no,inc)
t=-l:inc:l;
x=[zeros(1,(l+no)/inc) 1 ones(1,(l-no)/inc)];

3. Exponential Signals

Exponential signal vary with respect to some exponent that may be real or imaginary. Two

types of exponential signals are there.

1. Real exponential signal

A real exponential is defined as follows.

X(n)=a

Example: X(n)=0.9 ≤≤

We do it in Matlab as

x=0.9.^(n);

__

plot(n,x)

2

1.51-

1 -

0. 5 -

0 -

-0.5 -

-1 -

-1.5 -

-2

n ∨ n , a

n

52 Page 52

n 10 0

n=0:10;

X(n)=e (α+jw)n

The shape of the real exponential varies as decaying or rising exponentials. Depending upon the real
constant, signal decays or rises.

Complex Exponential signals

Complex valued exponential signal is defined as

 ∨ n

Matlab function for plotting the complex valued exponential is given below.

Example: x(n)=e a=0.2+0.3j ≤≤

a=0.2+0.3j;

__

x=exp(a*n);
plot(n,x)

1

0.9

0.8

0.7

0.6

0.5

0.4

2.

an

53 Page 53

n=-10:10;

Example: Given a complex exponential signal x(n)=e

alpha=-0.1+0.3j;

realx=real(x); %Real Part

(-0.1+0.3j)n

imagx=imag(x); % Imaginary Part

magx=abs(x); % Magnitude

subplot(221);stem(n,realx);title('Real Part');

 . Find the real, imaginary part of the
signal. Find the magnitude and phase of the signal and plot them.

x=exp(alpha*n);

phasex=angle(x); %Phase

subplot(222);stem(n,imagx);title('Imaginary Part');

__

subplot(223);stem(n,magx);title('Maginitude Part');
subplot(224);stem(n,phasex);title('Phase Part');

2

1

O h

1 -

2 -

3 -

4 -

5 -

6 -

7 -

8

54 Page 54

0
()

0 t t

-1 0 -5

rt =

Real Part Imaginary Par

 0 5 10 -1 0 -5 0 5

Maginitude Phase Part

?? ff

-5 0 5 10 -1 0 -5 0 5

4. Unit Ramp

Ramp signal is defined as

≥=

 t = otherwise

The amplitude values vary as domain increases. Ramp signals exts on positive side only.
Matlab Code for Unit ramp is given below.

t=0:0.01:10;

plot(t,x)

Output signal is given below.

__

 Part

l

t • <! >

• L
<l

0
ic i

0
O

L
(9

'

x=t;

55 Page 55

function [x,n]=rampseq(no,n1,n2)

Another approach is to generate a ramp signal on shifted point or interval. Function for the shifted

ramp is given below.

%produces ramp sequence on axis n and starting from no

x1=[(n-no)>=0];

Example:

[x,n]=rampseq(1,-5,6)

Stem(n,x)

Output is shown below.

__

n=n1:n2;

x=x1.*(n-no);

10

9

8

7

E

5

4

3

2

1

0
0

end

56 Page 56

5. Rectangular Pulse

 Rect signal is defined as

1 − ≤≤

0 t = otherwise

Rect signal produces a rectangular pulse of the width equal to the time interval with half of the

width lying on negative side and half on positive side.

Matlab code is given below.

function [x,n]=rectseq2(t,n1,n2)

x=[(n+(t/2))>=0 & (n-(t/2))<=0];

Example:

In command window use the following example

[x,n]=rectseq(2,-3,5);
stem(n,x);

__

rect =

n=n1:n2;

end

1/ 2 1/ 2 t

57 Page 57

__

1 r

0.9 -

0.8 -

0.7 -

0.6 -

0.5 -

0.4 -

0.3 -

0.2 -

0.1 -

06
-3 -2

-6
-1

58 Page 58

n 20 20)] (10) (

2] 5 3

width of the pulse =2. −≤ ≤

nn 0 b. xn

a. xn

] 7 [] 5 [] 6 [[] 2 [

Exercise

1. Use the impulse and step functions to implement the function y[n] given by the relation.

 Implement amplitude scaling through sigscale function.

yn = + + + + −−

b. y t = + −− − −

Use L=6 for y[n] and L=5 for y(t). Inc=0.01. Plot the sequences.

2. Generate and plot the following sequences over the indicate intervals.

() = + − − −≤ ≤

() = −− − − − ≤≤

3. Use the functions for signal flipping, amplitude scaling, signal addition and ramp to

 generate the following sequence.

4. Use rect(t) function from your manual and generate a periodic rectangular signal. Take

35

__

(

2 (n 2) 35

n 10)]

a. n n n n

() 3 () t () t t (t 1) () t 5 (t 2)

(n 4) n

[(n) n +10e -0.3(n-10) [

n .

59 Page 59

ISRA University Islamabad Campus

Signals & Systems Lab

EXPERIMENT # 06: Sound Manipulation and
Playback

Name of Student: …………………………………..

Roll No.: ……………………………………………

Date of Experiment: ………………………………..

Report submitted on: ………………………………..

Marks obtained: ……………………………………

Remarks: ……………………………………………

Instructor’s Signature: ……………………………...

60 Page 60

Signals and Systems ||Lab-6

Playback and Sound Manipulation

Objective:

Objective of the lab is to manipulate an input audio signal by applying different operations.

Playback

An analog signal input to the sound card is sampled and digitized by sound software, such as the

―sound recorder‖ in windows. The recorded sound signal is saved in a wav file. This file can be

retrieved in Matlab and playback.

Mono/Stereo Sound

Matlab understands mono and stereo sounds as single column and 2 column vectors respectively.

Mono or monophonic describes a system where all the audio signals are mixed together and

routed through a single audio channel. Mono systems can have multiple loudspeakers, and even

multiple widely separated loudspeakers. The key is that the signal contains no level and arrival

time/phase information that would replicate or simulate directional cues.

Stereophonic sound systems have two independent audio signal channels, and the signals that are

reproduced have a specific level and phase relationship to each other so that when played back

through a suitable reproduction system, there will be an apparent image of the original sound

source. Stereo would be a requirement if there is a need to replicate the aural perspective and

localization of instruments on a stage or platform, a very common requirement in performing arts

centers.

Recording of sound

Sound can be recorded into two modes

1. Mono Mode 2. Stereo Mode

For recording of a sound we first generate an audio object by using the following command

ai=analoginput('winsound')

analoginput constructs an analog input object ai associated with the adopter ‗winsound‘.

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

61 Page 61

Mono Mode: if you add 1 channel, the sound card is said to be in mono mode and must have

hardware id of 1. Command for adding channel is as below:

addchannel(ai,1)

Stereo Mode: if you add 2 channels to a1, sound card is said to be in stereo mode. Channels are

added as below.

Addchannel(ai,1)
Addchannel(ai,2)

Or
Addchannel(ai,1:2)

To delete a channel from the stereo, channel 2 must be deleted.

delete(ai,channel(2))

Resulting signal becomes mono signal.

Manipulation

Since Matlab treats all the inputs and output as matrices/vectors, therefore the manipulation of an

audio signal is no different than altering the elements of matrices. Avoid using loops in

manipulating a signal

Example: Make a folder in C: directory with name ―soundlab‖. Copy the file tessound.wav

(placed at network address) to the ―soundlab‖ folder.

[soundsig,fs,nbits]=wavread('c:\soundlab\testsound.wav');
% Soundsig is 2-column matrix

%fs is the sampling frequency
%nbits is the no of bits per sample

left=soundsig(:,1); % Splitting soundsig into left column matrix
right=soundsig(:,2); % Splitting soundsig into right column matrix
l=length(left);

half=left(1:2:l); % dividing the left matrix into half
reverse=flipud(left); % flippud=flip updown
wavplay(soundsig,fs);

wavread returns the sound signal as 2-column matrix with sampling frequency and no. of bits per

sample. Sound signal is applied different operations and then played by wavplay function.

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

62 Page 62

Changing length of sound signal

To change the length of the sound signal we have to choose the required no of sample.

For example to change the sound signal from 10 sec to 4 seconds length, we use the following

command

Cutsig=soundsig((1:4*fs),:);

Echo signal is the delaye and attenuated version of the sound signal which is added in the

original sound wave to produce noise.

Consider the same sound signal as your input signal.We generate the echo signal for the sound

using user defined delay and attenuation. Matlab function code is as below:

function [sigx,echosig,reflectedsig]=echogen(soundsig,fs,td,attn)
%generates an echo signal of the input sound signal

zer=zeros(td*fs,2);
sigx=[soundsig;zer];

reflectedsig=[zer;soundsig*attn];
echosig=sigx+reflectedsig;

Example:

In command window, we define the delay , attenuation and proceed to call the echogen function
as below:

attn=0.5;
td=2;

[soundsig,fs,nbits]=wavread('c:\soundlab\testsound.wav');
[sigx,echo,ref]=echogen(soundsig,fs,td,attn);

wavplay(echo,fs);
wavwrite(echo,fs,nbits,'c:\soundlab\echosig');

The code above produces an echo signal giving a reflected sound an attenuation of 0.5 and time
delay of 2 second. Wavplay function plays the echo signal with the sampling frequency fs.

Example:

Using the same sound signal file and its resulting parameters, try the following.

wavplay(soundsig,fs)
wavplay(soundsig,0.5*fs)

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

Echo

1.
2.

63 Page 63

3.
4.

5.
6.
7.
8.
9.

 wavplay(soundsig,2*fs)
 wavplay(half,fs)

 wavplay(half,0.5*fs)
 wavplay(half,2*fs)

 wavplay(reverse,fs)
 wavplay(reverse,0.5*fs)
 wavplay(reverse,2*fs)
 10. wavplay(2*soundsig,fs)

Turn on your speakers/headphones and hear the entire above signal and note the differences
between each. Last command does increases the volume of the sound signal.

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

64 Page 64

Exercise

1. Implement the echogen function using following parameters and write down the

 differences which you find in audio output.

 a. Att=0.5, td=0.5

 b. Att=0.3, td=1

 c. Att=0.1. td=2

2. Write down the code for the output of the following system. Take same audio

 input file that is placed on your network address.

3. Take the audio file as input in Matlab. Cut the resulting signal sound signal into

 one third of the original signal and save the new signal at fs=22050 and nbits=8.

 Playback the new file and state the difference between the two sounds. Mention

 code as well.

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

 Attn/2 2td

Input signal
Output signal

Reflected signal

+

65 Page 65

ISRA University Islamabad Campus

Signals & Systems Lab

EXPERIMENT # 07: Convolution and Laplace
Transform

Name of Student: …………………………………..

Roll No.: ……………………………………………

Date of Experiment: ………………………………..

Report submitted on: ………………………………..

Marks obtained: ……………………………………

Remarks: ……………………………………………

Instructor’s Signature: ………………………………

66 Page 66

[]

[] ∑ [][

Signals and Systems || Lab 7

Convolution and Laplace Transform

Objective

The theme of this lab to perform the convolution for finding the output of an LTI system using

system‘s impulse response and input signal. Second part of the lab comprises transfer function

representation and Laplace transformation.

Convolution

Consider a discrete time system with input x[n] and output t[n]. Output y[n] is computed output

of the system through impulse response which is the output of the system when the input is unit

impulse.

When Impulse response isgivenwe can find out the system output by following relation

y n = []

y n = −]

For continuous signal, output is computed through following relation.

() = −

Convolution using Matlab

To find out the output through convolution, firstly vector x[n] and h[n] are to be defined. Then

the output is computed through the following command

yn = (,)

Command conv(x,h) assumes that the 1 element in x correspond to the n=0, 1 element in

vector h corresponds to n=0. SO the 1 element in yn will also correspond to n=0.

The command Conv () can also be used to multiply polynomials.

Suppose the coefficients of the polynomial a are given in vector A and that of b are given in B.

then coefficients of the output polynomial can be found out as:

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

() ()

x n * []

x k h n k

x Th t T d T

conv x h

k=−∞

h n

∞

y t

∞

−∞
∫

st st

st

67 Page 67

[1, 2 ,

[]

[]

For Example

a(s)=S+1

b(s)=S+2

then
A=[1 1];

B=[1 2];
ab=conv(A,B)

output comes out to be
ab=[1 3 2]

Example:

 Given the following input signal for discrete LTI system and impulse response.

 h n = −1, 1, 3]

Code to find the convolved signal is given below.

x=[1,2,1,2,1,1];
h=[1,2,-1,1,3];

y=conv(x,h);
subplot(311);stem(x);title('Input Signal');

subplot(312);stem(h);title('Impulse Response');
subplot(313);stem(y);title('output Signal');

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

xn =[1, 2 , 1, 2 , 1, 1]

68 Page 68

2.5 3 3.5 4

Impulse Response

output Signal

If x[n] and h[n] are of different lengths or different starting points then the output will be
computed correctly but the indices would have to be adjusted. For example: if x[n] starts from

n=-1 and h[n] starts from n=-3 then the output signal will start from n=-4.

Example: Find the output of the LTI system when x(n)= {1,1,2,1,1,3} and h(n)={1,2,-1,1}

Matlab code for this scenario is given below.

function [y,k]=conv_sig(x,n,h,m)
%finds the output for different lengths of input and impulse response

ki=n(1)+m(1); %Starting index of the output
ke=n(length(n))+m(length(m)); %Ending index of the output

k=ki:ke; % Output indices
y=conv(x,h);

In command Window:

x=[1 2 1 1 1 3];
n=[-3:2];
h=[1 2 -1 1];

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

Input Signal

4.5

69 Page 69

t 3 0.3 0.1,

()

()

αβ 3 And

m=[-1:2];
[y,k]=conv_sig(x,n,h,m);

subplot(311);stem(n,x);title('Input Signal');
subplot(312);stem(m,h);title('Impulse Response');
subplot(313);stem(k,y);title('output Signal');

Output is shown below

In case of continuous signals, we find the convolution in the same manner.

Example: Find the output when

xt = α ()

ht = β ()

where

= = − ≤≤

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

t u t

t u t

Input Signal

70 Page 70

alpha=0.1;

t=-3:0.01:3;

x=(alpha).^t.*heaviside(t);

Matlab code is

beta=0.3;

h=(beta).^t.*heaviside(t);

subplot(311);plot(t,x);title('Input Signal');

Transfer Function Representation

Transfer function of a system is defined as the ratio between Output and Input.

 Transfer functions are defined in MATLAB by storing the coefficients of the numerator and

denominator in vectors.

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

y=conv(x,h);

subplot(312);plot(t,h);title('Impulse Response');
subplot(313);plot(T,y);title('output Signal');

71 Page 71

2

()

()
23

32

12
12

12
12

H s = ()

.....

.....

HS =

45

m mm
m mm

m mm
m m m

S a S a

num=[2 0 3]; %Coefficients of the numerator
den=[1 4 0 5]; %Coefficients of the

Generally a transfer function is represented as

B s / ()

Where B and A are defined as

B = ++ +

A aS
−−

Coefficients of A and B are stored in vectors and then used forward.

Example: Given the following transfer function,

S +

SS

We implement the transfer function in Matlab as

denominator

To convert the vectors in transfer function we use
h=tf(num,den); %Transfer function

h

Transfer function:

 2 s^2 + 3

s^3 + 4 s^2 + 5

Zero,poles and gain can be found using the following

[z,p,k]=tf2zp(num,den};
z =

 0 + 1.2247i
 0 - 1.2247i

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

b S b S
−−

−−

−−

= ++ +

++

As

bS

72 Page 72

p =

 -4.2737
 0.1369 + 1.0729i
 0.1369 - 1.0729i

k =

 2
Transfer function can be obtained back from zero poles and gain.

[num,den]=zp2tf(z,p,k);
num =

 0 2.0000 0 3.0000

den =

 1.0000 4.0000 0 5.0000

tf(num,den)

Transfer function:

 2 s^2 + 3

s^3 + 4 s^2 + 5

Now suppose we want to check the response of the system against a range of frequencies, we can
this response using following

w=pi:pi/1000:2*pi*f;
[h,k]=freqz(num,den,w);

To draw the poles,zeros,gain and phase of the transfer function, we draw bode plot using
following function

bode(num,den)

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

73 Page 73

−∞

∞

-i

()

 • 1 2

Bode Diagra

10 10 10 10

 Frequency (rad/sec)

Laplace Transform

 Laplace transform is used to transform a function/signal from time domain to s domain
(complex domain). System can be analyzed and performed different operations in S domain and

then can be taken back into t domain. Laplace transform converts the function expression into
simple algebraic polynomial. Following expression is used to calculate the Laplace transform of

a time domain function f(t).

F S = f ()

In Matlab we solve the Laplace transform using symbolic math toolbox. Function used for
finding the Laplace is Laplace().

Example:

Let f(t)=t and we have to find the Laplace transform of the function. Matlab code for this is given
below.

syms t
f=t;

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

t e ∫

m

st dt
−

74 Page 74

()

st) (f ()
 1

2π i

(SS

Example:

Laplace transform of e

Syms a t s
f=exp(-a*t);
F=laplace(f);

2) 1) (

-at

HS =

F=laplace(t)

Output returned is

 is calculated as:

Output comes out to be

F=1/s+a

Inverse Laplace Transform

 Laplace transform of any time domain function can be returned back to time domain by
using inverse Laplace transform. Following is the relation for the inverse laplace transform

t = lim F S e ds

In Matlab we find out the inverse laplace transform using symbolic math toolbox. ilaplace is
function for finding the inverse laplace.

Example:

Given below the transfer function

 ++

Find the inverse laplace.

Matlab Code is given below

Syms s

H=(s+3)/ ((s+1)*(s+2));
F=ilaplace (H);

Output comes out as:

F=2*exp (-t)-exp (-2*t)

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

F=1/S 2

+iT

T→∞
−iT
∫

(S +3)

75 Page 75

1

()
32

32

In finding the inverse Laplaceoften we encounter improper fractions having numerator power
greater than denominator. For such fractions we first divide the polynomials (numerator and

denominator) and then make partial fractions before taking inverse Laplace.

Example:

Find the inverse Laplace of the following transfer function

Hs =
33

85

In Matlab we solve it as:

num=[1 3 0 3]; % Co-efficients of numerator

den=[1 8 15]; % co-efficients of denominator
[Q,R]=deconv(num,den);

% Divisions of two polynomials to make improper fraction a proper fraction
[r,p,k]=residue(num,den);

%Partial fraction of the transfer function

%By residue we get the following parameters
% r =

 23.5000

 1.5000

p =

 -5

 -3

k =

 -5 %

From values above we write Matlab expression for h(s) as

symss
h=(s-5)+(23.5/(s+5))+(1.5/(s+3));

f=ilaplace(h);

Output comes out to be

f = dirac(1,t)-5*dirac(t)+47/2*exp(-5*t)+3/2*exp(-3*t)

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

SS

S S S

++

+ ++

76 Page 76

Note:

 1. Deconv returns the output as quotient (Q) and Remainder ®

 2. Residue converts the fraction to partial fraction and returns three vectors r (constants of
 numerators), p (poles) and K (direct terms).

 3. Dirac is the built-in function for unit impulse.

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

77 Page 77

(iii)

(ii)

a)
b)

 e-'2tu(t

 e'u(t)

(i) 2tu(t)

0, otherwise,

fe+i, 0 < f c < 4 ,

)

r
 J l - f c ,

an d h[k
 0 < f c < 3

 = <

Exercise

1-Consider the following two discrete functions:

,

 0. otherwise.

 Plot the two functions in the same figure using the Matlab stem.

 Using the MATLAB conv function, find the convolution of the two functions. Plot the convolution
 output using the stem.
c) Verify the result obtained in the previous question using hand calculations. Use the graphical
 method discussed in class.

2- Find the convolution of

 an d tsu{t

 an d tu(t)

an d e

tu(t)

Plot both the functions and their convolved output in the same figure using subplot.

3- Given x [n] = u [n] – u [n – 10] and h [n] = {1,-2, 4, 6, -5, 8, 10}.

 ↑

Find y[n] = x[n]*h[n]. Plot x[n], h[n] and y[n] using stem command in 3 subplots

4- Find the inverse Laplace of the following systems.

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

)

.

78 Page 78

5- Given

Find the partial fraction expansion of H(s) using Matlab and also write the expression with the
help of Matlab output.

Find the quotient and remainder of H(s) using Matlab.

Find h (t), the Inverse Laplace Transform of H(s) using Matlab from partial fraction expansion.

Compute the Inverse Laplace Transform directly using Matlab symbolic toolbox and compare
you result with part (c).

Signals and Systems Lab (EL313-L)DEE ISRA University Islamabad

 a)

 b)

 c)

 d)

79 Page 79

ISRA University Islamabad Campus

Signals & Systems Lab

EXPERIMENT # 08: Periodicity, Harmonics and Fourier

Series

Name of Student: …………………………………..

Roll No.: ……………………………………………

Date of Experiment: ………………………………..

Report submitted on: ………………………………..

80 Page 80

Marks obtained: ……………………………………

Remarks: ……………………………………………

Instructor’s Signature: ……………………………...

[

(()

[]

Signals and Systems

Lab8|| Periodicity, Harmonics and Fourier series

Objective:

The theme of the lab is to check the periodicity of the given signal, making a signal periodic ,
checking its various harmonics and use them to generate a Fourier series of a particular

periodic signal.

Sections are described as follows:

Periodicity

Periodic signals are very common class of the signal that we encounter in various systems. A
periodic continuous time signal has the property that there is a positive value t for which

X t = +)

Where a=0,1,2,3,4….. for all values of t.

In other words, a periodic signal holds the property of being unchanged by a time shift of T,
where T is the time period of the signal.

A periodic signal in discrete time is defined similarly to continuous time signal. Specifically a
discrete time signal is periodic with period N where N is positive integer. We may define a

discrete time periodic signal x(n) as

Xn = +]

Where b=0,1,2,3,4

Let us assume we have a sinusoidal signal () ft) with frequency of 1Hz. We can

generate its periodic version as follows.

% Code to represent a periodic signal

f=1; %Single cycle

x=sin(2*pi*f*t); %Original signal

y=x'*ones(1,3); % Copies of the original signal

y1=y(:); %Converting the copied signal into column form

X t aT

Xn bN

x t = sin(2

81 Page 81

per_sig=y1'; % Copied vectors in a row

subplot(211);plot(x);title('Original Signal');

subplot(212);plot(y2);title('Periodic Veersion');

Output of the above operation is as follows.

Same process holds for discrete time signal as well.

Fundamental Period
The fundamental period is the smallest positive value of T (continuous) and N (discrete) for
which the equation of periodicity holds. Consider an example of sine function. In this case signal

repeats itself after

Harmonics

A harmonic of a wave is a component frequency of the signal that is an integer multiple of the
fundamental frequency, i.e. if the fundamental frequency is f, the harmonics have frequencies 2f,

3f, 4f, . . . etc.

2, 4, 4, 8 . But the fundamental period is 2

Original Signal

.

82 Page 82

()

 The harmonics have the property that they are all periodic at the fundamental frequency,

therefore the sum of harmonics is also periodic at that frequency. Harmonic frequencies are
equally spaced by the width of the fundamental frequency and can be found by repeatedly adding

that frequency. For example, if the fundamental frequency is 25 Hz, the frequencies of the

harmonics are: 50 Hz, 75 Hz, 100 Hz etc.

Even and odd Harmonics

If the harmonic of a signal function has even coefficients,it is called an even harmonic.
Otherwise it the coefficients is odd, it is called odd harmonics.

For example

() =) any given signal

cos(t t t t odd harmonics

cos(2 t t t t even harmonics.

Different waveforms can e obtained by adding one type of harmonics. Foe example: adding
infinite cosines/sine generates a square wave. Both will have 90 degree phase shift from each
other. Particularly it is not possible to add infinite number of harmonics, but as we increase the

number of harmonics, a decent waveform can be obtained.

Example:

Let us assume that we want to find the first 4 harmonics of the following signal.

xt = sin(t

We proceed as follows

% Code to represent the Harmonics of a signal

inc=0.01;

t=0:inc:4;

w=2*pi*f;

fundamental=sin(w*t); %fundamental harmonic

har2=sin(2*w*t); %2nd harmonic

har3=sin(3*w*t); %3rd harmonic

har4=sin(4*w*t); %4th harmonic

hold on;

plot(t,fundamental,'ro');

plot(t,har2,'g');

), cos(3

), cos(4

cos(t is

ω),

cos(5

), cos(7

ω),

cos(6

), cos(8

xt

Then

)....... are

)..... are

)

83 Page 83

plot(t,har3,'m:');

plot(t,har4,'r');

hold off;

Output is given below.

Same harmonics can be found as follows

% Code to represent the Harmonics of a signal

inc=0.01;

t=0:inc:4;

w=2*pi*f;

n=1; %1st harmonic

fundamental=sin(w*n*t);

n=2; %2nd Harmonic

har2=sin(w*n*t);

n=3; %3rd harmonic

har3=sin(w*n*t);

n=4; %4th harmonic

har4=sin(w*n*t);

hold on;

plot(t,fundamental,'ro');

plot(t,har2,'g');

plot(t,har3,'m:');

plot(t,har4,'r');

hold off;

A for loop can also be used for generation of harmonics.

84 Page 84

0

 1

T

 1

T

 1

2T

n =1
0

Where a o,a n and b n

f (x) =) s in cos (n n

Fourier Series

 Fourier series can be stated as any periodic signal can be expressed as a series of

harmonically related sinusoids whose frequencies are integer multiple of the fundamental

frequency.

It was discovered by a French mathematician Fourier.

General representation of the Fourier series is given below.

a + +

 are the coefficients of constant term, cosines and sines respectively and
are defined as follows.

a = f ()

a = f (x) cos nxdx

b = f (x) sin nxdx

Above expressions of the coefficients hold for the signal having Time period of T.

In Matlab we implement the Fourier series by finding out the coefficients of the fourier series
and implementing the function.

Example:

Find the Fourier series of the following signal

a
∞

∑

n x b n x

n

n

T

−T

x dx ∫

T

−T
∫

T

−T
∫

1.5

1

0.5

0

-0.5

-1

-1.5

85 Page 85

n) c os

0

(1
2

frsr=ao+sum(y,1);

bn

Calculation for the Fourier coefficients yield the following

n

a = 0

a = 0

= −

Matlab code is as follows

function [t,frsr]=sqrfs(har,tmax)

fo=1/(2*pi);

wo=2*pi*fo;

t=-tmax:0.05:tmax;

n=1:har;

ao=0;

an=zeros(1,length(n));

bn=(2./(pi*n)).*(1-cos(n*pi));

y=zeros(har,length(t));

for n=1:har,

 y(n,:)=an(n)*cos(n*wo*t)+bn(n)*sin(n*wo*t);

Command Window Part is as follow

tmax=2*pi; % Time period of the signal is 2pi

for i=1:6,

 har=[1 3 10 20 50 2000];

 [t,f]=sqrfs(har(i),tmax);

 plot(t,f);

 grid;

 pause;

Output is as shown below.

n

end

end

86 Page 86

51 i i i

i

 I i i

 !

 I i

 1

1 I I I I L

 1 1

-8 -6 -4 -2 0 2 4 6

Explanation:

Output shows different harmonics added up to produce the final output, that is the given signal.

As number of harmonic increases the discontinuity (ripples) move towards the corner.

Example:

Find the fourier series of the following sawtooth wave.

1.5

1 h

0.5 -•

0 -

-0.5 -

-1 -

-1.5

J

1 r 1 1.5

1

0.5

0

-0.5

-1

-1.5

87 Page 87

Matlab code is follows.

function [t,frsr]=sawtooth(har,tmax)

fo=1/(2*pi);

wo=2*pi*fo;

t=-tmax:0.05:tmax;

n=1:har;

ao=0;

an=zeros(1,length(n));

bn=(2./n).*(-1).^(n+1);

y=zeros(har,length(t));

for n=1:har,

 y(n,:)=an(n)*cos(n*wo*t)+bn(n)*sin(n*wo*t);

frsr=ao+sum(y,1);

Command window part is as follow.

tmax=2*pi; % Time period of the signal is 2pi

for i=1:6,

 har=[1 3 10 20 50 2000];

 [t,f]=sawtooth(har(i),tmax);

 plot(t,f);

 grid;

 pause;

end

end

88 Page 88

Output is as shown below.

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

3

2

1

0

-1

-2

-3

4

3

2

1

0

-1

-2

-3

-4

4

3

2

1

0

-1

-2

-3

-4

89 Page 89

Shorten Calculations

Fourier Series coefficients can be calculated by using following tips.

1. If f(t) is even, bn will be zero. For example cos(t) is even signal

2. If f(t) is odd , an will be zero. For example sin(t) is odd signal.

3. If signal is equally spaced from the base lene, ao will be zero.

4. Coefficients can be calculted using symbolic maths toolbox

90 Page 90

Exercise

Q1: Find the Fourier coefficients and Fourier series of the following function.

0 i f - 7 T ^ X <

1 i f 0 ^
fix + 2TT

Write MATLAB code for Fourier series implementation using following harmonics.

H1=[3 20 33 100]. Use subplot to plot all the harmonics result.

Q2: Find the Fourier series function of the triangular wave defined by f(x)=|x| for -1<x<1 and

f(x+2)=f(x) for all x. The graph of x is shown below.

Write MATLAB code for Fourier series implementation using following harmonics.

H1=[5 25 33 50]. Use subplot to plot all the harmonics result.

Q3: A voltage Esinwt where t represents time, is passed through a so called half wave rectifier

that clips negative part of the wave. Find the Fourier series of the resulting function using

MATLAB.

 X < 7

/(*) =
0

T
an d)

"7 T 0 T T 2n

91 Page 91

7 T
E si n a>t

i f -— ^

fi t + 2TT/O>)

 i f 0 ^

Where E=5, w=pi.

Use harmonic H=[20 40 60 100]. Use subplot to plot all the harmonics result.

 / < 0

 = / (/

 / < —

0

/(/) =
t o

)

0)

92 Page 92

ISRA University Islamabad Campus

Signals & Systems Lab

EXPERIMENT # 09: Fourier
Transforms

Name of Student: …………………………………..

Roll No.: ……………………………………………

Date of Experiment: ………………………………..

Report submitted on: ………………………………..

Marks obtained: ……………………………………

Remarks: ……………………………………………

Instructor’s Signature: ………………………………

93 Page 93

)

Lab09||Signals and Systems

Fourier Transform

Objective

Main objective of the lab is to seek the concept of transformation of a time domain signal to

frequency domain using Fourier transformation and its analysis. In the last, we will find the

frequency response of a certain system over a range of frequencies.

Fourier Transform

Fourier Transformation transforms a composite time domain signal to frequency domain

(complex) which shows the frequency components present in the system. The system can easily

be analyzed through this transform. Fourier Transform falls in two types

1. Continuous time Fourier transform

2. Discrete Time Fourier transform

We will discuss them one by one

Continuous time Fourier transform

CTFT is defined by the following relation.

= f ()

Inverse Fourier transform transforms the signal back into time domain and give mathematically

as

In Matlab we implement CTFT using symbolic math toolbox. Fourier and Fourier are the two

functions used for Fourier and inverse furrier transform.

(jw F e jwt dt t e
−

∞

−∞
∫

 1

2π
f () t =) e jwt dw (jw F e

∞

−∞
∫

94 Page 94

()
2 t /2

()

()

Example

Find the Fourier transform of the following signal.

xt = ()

CTFT by mtalba is computed as follows.

ft=dirac(t);

fw=fourier(ft);

pretty(fw)

Example

To find the CTFT of a unit step function we proceed as follows

xt = ()

u=sym('heaviside(t)');

fw=fourier(u);

pretty(fw)

Example

Find the CTFT of

syms f t

f=exp(-t^2/2);

ft=fourier(f);

pretty(ft);

f=ifourier(ft)

pretty(f)

Signals and System (Lab)

xt = e

:

t

syms t

t

−

.

95 Page 95

(

(

(

n=0

n=0

(n

∞

n = − ∞

j w n () (

()

Example

Find the Fourier Transform of the following signal.

x t = te

syms w t

f=t*exp(-t^2);

fw=fourier(f);

pretty(fw);

Discrete Time Fourier Transform

Discrete Time Fourier transform is defined as below

X e) x n e

As compared to CTFT, DTFT deals with finite discrete time signals. Discrete time signals can be

of infinite or finite number of samples. We deal with both of them one by one.

DTFT for infinite duration signals

Let us take the following example for discrete signal having infinite number of samples.

Example

Fourier transform of the discrete signal xn = (0.5)) can be calculated as

X e) = ∑

Xe) = ∑

Xe) = ∑

()

()

Signals and System (Lab)

1−0.5e

jwn

jwn
jw

= ∑

(0.5) e

(0.5e)

Xe =

Xe =

2
t −

j w n −

() n

(ne)

1

−0.5

jwn (0.5) n

n=−∞

jwn n −jwn

jwn −jw n

−jw

jw e

e

∞
jwn −

∞

∞

96 Page 96

If x(n) is of infinite duration, then Matlab can not be used directly to compute X(e jw

). However

we can evaluate the expression X(ejw) over [0,π] frequencies and plot the magnitude and phase

(or real and imaginary parts).

Following is the code and output for the Fourier transform evaluation of the above signal.

%Fourier Transform Evaluation

w=[0:1:500]*pi/500; % Range of frequencies over 501 points

x=exp(j*w)./(exp(j*w)-0.5); %Fourier Transform

magx=abs(x); %Magnitude

angx=angle(x); %Phase

realx=real(x); %Real Part

imagx=imag(x); %Imaginary Part

subplot(221);

plot(w/pi,magx);grid; %plotting in Pi units

xlabel('frequency in pi units')

ylabel('Magnitude')

title('Absolute Value');

subplot(222);plot(w/pi,imagx);grid;

xlabel('frequency in pi units')

ylabel('Magnitude')

title('Imaginary Value');

subplot(223);plot(w/pi,realx);grid;

xlabel('frequency in pi units')

ylabel('Magnitude')

title('real Part');

subplot(224);plot(w/pi,angx);grid;

Signals and System (Lab)

97 Page 97

 X (e jwn

2r r

xlabel('frequency in pi units')

ylabel('Magnitude')

title('Imaginary Part');

Output is shown below.

Absolute Value Imaginary Value

 :

 05

frequency in pi units

 real Part
frequency in pi units

 Imaginary Part

 0.5

frequency in pi units frequency in pi units

DTFT for finite duration signals

If x(n) is of finite duration then X(can be computed at evaluate

) at equidistant frequencies between [0,π] then expression for X(e

implemented as Matrix multiplication operation.

can be

Let us assume that the signal x(n) has N samples between n nn

evaluate the X(e

ω = * K where KM

Signals and System (Lab)

N

any frequency w.

≤≤ and that we want to

= 0,1, 2,.......,

jwn e) If we

jwn)

1

 π

M

jw) at

—•

1.5

98 Page 98

()

N

(
l=1

* exp(

 Where n nn

Where Xe

N

Which are (M+1) equispaced frequencies between [0,π]. Expression for X(e

X e)
−j ()

() evaluated as X and x respectively, we

X=Wx

Where W is an (M+1)xN matrix given by

− j ()

≤≤ and KM

Furthermore n and k are taken as row vectors. Therefore taking transpose of above equation

w [exp(

In Matlab we take sequence and indices as row vectors so we can write the final expression for

X = − j *

Where n nn and k M

Example

Find the DTFT for the following discrete time signal

x n = {1, 2, 3, 4, 5}

Matlab code for the above signal is given below.

n=-1:3;

k=0:500;

Signals and System (Lab)

jw

e

M

pi /

= ∑

) can be written as

 and x(n) are column vectors

We = 0,1, 2,.......,

= −)]

M). ^ (

jwk M ()
kn

xn

jwk have

kn
=

1

T
kn j

M

X(e jwn) as

x n '* k)

1 = :
N 0: = ;

y=1:5;

99 Page 99

w=(pi/500)*k;

x=y*exp(-j*pi/500).^(n'*k);

magx=abs(x);

angx=angle(x);

realx=real(x);

imagx=imag(x);

subplot(221);plot(w/pi,magx);grid;

xlabel('frequency in pi units');

ylabel('Magnitude');

title('Absolute Value');

subplot(222);plot(w/pi,imagx);grid;

xlabel('frequency in pi units');

ylabel('Magnitude')

title('Imaginary Part');

subplot(223);plot(w/pi,realx);grid;

xlabel('frequency in pi units');

ylabel('Magnitude');

title('Real Part');

subplot(224);plot(w/pi,angx);grid;

xlabel('frequency in pi units');

ylabel('Magnitude');

title('Phase');

Signals and System (Lab)

 8

100 Page 100

(

[

Properties of Fourier Transform

Fourier Transform has the following two properties.

1. Periodicity

DTFT is periodic in w with period of 2π..

() j w 2]

We need only one period of X(e

2. Symmetry

 For real valued x(n), X(e

Xe) = X e

Signals and System (Lab)

= (jw

jw

jw

Xe Xe

) vi.e [0,2π] or [-π,π] for analysis and the whole domain.

) is conjugate symmetric.

+)

*()
jw jw −

Or

101 Page 101

n 10 /3
) 0

)| | = (

() () jw − jw Xe < Xe

Re[Xe)] = Re[Xe

Im[Xe)] = Im[Xe

| Xe Xe)|

 <=

To plot X(e), we need to consider only a half period of X(e). Generally period is

chosen to be [0,π]

Example

Find the DTFT of the following signal and check for the periodicity of the transform.

Perform computation over [-2π:2π] frequency and 400 points.

() =
jn ≤≤

n=0:10;

x=(0.9*exp(j*pi/3)).^n;

k=-200:200;

w=(pi/100)*k;

X=x*(exp(-j*pi/100).^(n'*k));

magx=abs(X);angx=angle(X);

realx=real(X);imagx=imag(X);

subplot(221);plot(w/pi,magx);grid;

xlabel('frequency in pi units');

ylabel('Magnitude');

title('Absolute Value');

subplot(222);plot(w/pi,imagx);grid;

xlabel('frequency in pi units');

ylabel('Magnitude')

title('Imaginary Part');

subplot(223);plot(w/pi,realx);grid;

Signals and System (Lab)

((

((

(

)] jw

− jw)] jw

− jw jw

jw −

jw jw

xn (0.9 e

102 Page 102

IS 1 «5

xlabel('frequency in pi units');

ylabel('Magnitude');

title('Real Part');

subplot(224);plot(w/pi,angx);grid;

xlabel('frequency in pi units');

ylabel('Magnitude');

title('Phase');

A /WvwvW
 D OS t

Output shows that X(e) is periodic.

Frequency Response

In this section, we will find the frequency response of a system over a certain range of

frequencies.

Freqz is the Matlab function for this purpose.

Signals and System (Lab)

jwn

ll
1
1
I
1 1

1 1

I I
I
•
1

i H
v

 15 1

103 Page 103

1+e

()

()

H ()

(nn

() +− xn (

Example

Suppose we have the following system

yn =
 xn 1)

2

Where x(n) is the input of the system. Impulse response of the system is given by

hn =
) + −

Taking Fourier transform gives the frequency response of the system which is given by

jw =

Matlab implementation of the above system is as below

%Frequency response
num=[1 1];
den=[2];

w=-pi:pi/100:pi; %Range of frequencies
h=freqz(num,den,w);
plot(w/pi,abs(h));

Output is as shown below

Output shows that the system is low pass filter.

Signals and System (Lab)

(1)

2

2

jw −

104 Page 104

() 2

]. Study these plots and comment on their

Exercise

E.1: For each of the following sequences determine the DTFT X(e

X[n]= {4,3,2,1,0,-1,-2,-3,-4} Comment on the angle plot.

2. X(n)=(n+2)(-0.7)

E.2: A symmetric rectangular pulse is given by

 RN(n)=

Determine the DTFT for N=5,15,25,100. Scale the DTFT so that X(e

normalized DTFT over [-
function of N.

behaviour as a

E.3: Find and plot the frequency response of the given functions using freqz.

1. f(n) = x(n)−x(n−1)

E.4 : Find the CTFT of the following signals using symbolic Maths toolbox.

2 ()

e ut − ()

Signals and System (Lab)

jw

n-1

j0

2

). Plot the magnitude and angle of

 u(n-2)

1 for − ≤≤

0otherwise

)=1. Plot the

2. f (n)= x(n)+x(n−1)+x(n−2)

tu t − 3 ()

tt

1.

X(e jw).

N n N

,

3

1. t

2. e ut
−

105 Page 105

ISRA University Islamabad Campus

Signals & Systems Lab

EXPERIMENT # 10: Introduction to Simulink and Its
implementation

Name of Student: …………………………………..

Roll No.: ……………………………………………

Date of Experiment: ………………………………..

Report submitted on: ………………………………..

Marks obtained: ……………………………………

 Remarks: ……………………………………………

 Instructor‘s Signature: ………………………………

Signal and Systems Lab

106 Page 106

Lab10 || Introduction to Simulink and Implementation

Objective

Objective of the lab is to introduce the Simulink tool for the Matlab and develop understanding

of implementing the system model and analysis using this tool.

Simulink

Simulink is a graphical environment used for the modeling, simulation and analysis of a dynamic

system. Main interface of the tool is a block diagram based.

It provides an interactive graphical environment and a customizable set of block libraries that let

you accurately design, simulate, implement, and test control, signal processing, communications,

and other time-varying systems.

In Matlab we can access the Simulink tool through three different ways.

1. By typing Simulink in command window.

We get the following Simulink Library browser window open by this command

Signal and Systems Lab

107 Page 107

t.I:oel

j - J § j

ED A

i " " B Data

j - W\

H " H

h

h

[•••

;• 'Math

l

I"-

["]

9

<-ff l P

 Sinks

| -Source

 Simulink

 Library Browser

Enter search

Library: Simulink Search Results: (none)

 Simulink

 Commonly Used Blocks

|"-Continuou
 Commonly Used Blocks

Continuous
 - Logic an d Bit Operations

j—Lookup

 Operations Dtsccntinuiti

 Model Verification

 Model-Wide Utilities

| Ports & Subsystems

I-

Logic an d Bi t Operations

 s

I-User-Defined
Lookup Tables

a-Additional

 Aerospace Blockset

 Communications Blockset Math Operations
 Control System

 Acquisition Toolbox

 Simulator Link Wificsti:

 ED A Simulator Link MQ

1*1-Embedded

Block Description

Commonly Use d Blocks:

Showing: Simulink

2. In command prompt we can access the Simulink by following the menu

 File>New>Model

3. Clicking the Simulink Red icon on the main drop down menu.

Signal and Systems Lab

File Edit Vie w Help

 s

Discontinuities

 SignalAttributes

 Functions

 Math & Discrete

 IDE LinkCC

 term

Libraries

-

[••• Discrete

 Tables

|—Signal Routing

 Toolbox

 IN

a

II ; i

^ 1

t

Cisaet e

y

+ -
-r X

9.

i
r

108 Page 108

: Q §SSF ~°

5}

ft Newto

i±)~%—

ll ©

1 cl

File Edit Debug Parallel De

 C:\Users\Administrator\Documenti\MATLA

 MATLAB? Watch this Video,

Command History

 5/24/12 3:04 AM
 c
 — 5/24/12 10:12 AM

fsimulin

Simulink library Browser

 The Simulink Library Browser is the library where you find all the blocks you may use in
Simulink. Simulink software includes an extensive library of functions commonly used in

modeling a system. These include:

 1. Continuous and discrete dynamics blocks, such as Integration, Transfer functions,

 Transport Delay, etc.

 2. Math blocks, such as Sum, Product, Add, etc

 3. Sources, such as Ramp, Random Generator, Step, etc

Create a new Model. Click the New icon on the Toolbar in order to create a new Simulink
model.

 Simulink Library Browser

Edit Vie w Help

 Enter search term

Signal and Systems Lab

 see Demos, or read Getting Started.

1 MATLAB 7.6.0 (R20(
s

;p a | * Hm ^
Shortcuts [£j HowtoAdd 3

Current Directory

Window Help

Name * Valu e

B

Workspace M- • p x

Min Ma x

• x
| els e

d(i>=c(i) ;
(D=D+I ;
f en d
f en d
f cl c
f c
I d
1 cl c

k
1 cl c

»

Libraries Library: Search

109 Page 109

[~ !

We get the following window open

 untitled

File Edit View Sanitation Format Tools Help

D &

This is called Model window where we can design our model.

Example:

Suppose we want to implement the system which generates sine wave using Simulink.

To implement the system we need two blocks.

1. Source which generates sine wave

2. Device to see output

 In Simulink sine wave falls under category of Sources. Output is seen at oscilloscope

 in Sink category.

 Here is how we implement the system

 1. Open library browser. From Sources category select sine wave block and drag it

 to the model window

 2. From Sink category, select scope (oscilloscope) and drag it to the model window.

 You get the following window after getting the blocks

Signal and Systems Lab

 B i 10.0 Normal

Ready 100 %

110 Page 110

u 3 x ^ p > -V i £ 2

Edit Vie

w Simulation Format Too h

 | • • [100 (Normal

Ready 100% ode45

Next step is the wiring of the blocks.

Wiring Techniques

Use the mouse to wire the inputs and outputs of the different blocks. Inputs are located on the

left side of the blocks, while outputs are located on the right side of the blocks.

Integrator

When holding the mouse over an input or an output the mouse changes to the following symbol.

Use the mouse, while holding the left button down, to drag wires from the input to the output.

Automatic Block Connection:

Another wiring technique is to select the source block, then hold down the Ctrl key while left -

clicking on the destination block. Try the different techniques on the example above.

Connection from a wire to another block

If wire a connection from a wire to another block, like the example below, you need to hold

down the Ctrl key while left-clicking on the wire and then to the input of the desired block.

Signal and Systems Lab

Fil e Het p

D

IflDp l

Inputs
> 1

!

Output
Constant !

111 Page 111

Use the sample-based

Number of offset samples = Phase *

Samples per period = 2*pi

Help window

In order to see detailed information about the different blocks, use the built-in Help system

Source Block Parameters: Sine Wav e

Sine Wav e

Output a sine wave:

0(t) = Amp"Sin(Freq"t+Phase)

Sine type determines the computational technique used. Th e parameters in th e tw o
 types ar e related through:

 / (Frequency " Sample time)

 Samples per period / (2*pi

 sine type if numerical problems du e to running fo r large times
(e.g. overflow in absolute time) occur.

Parameters

Sine type: Time based

Time (t): Use simulation time

Amplitude:

Frequency (rad/sec):

|l

Phase (rad):

|

Sample time:

All standard blocks in Simulink have detailed Help. Click the Help button in the Block
Parameter window for the specific block in order to get detailed help for that block.

Signal and Systems Lab

Sin * Wjv t Scop *

•
: c >pt '•

Scop *

Scop* 1

 + Bias

)

Bias :
0

Q

112 Page 112

Number ol

r

:-l • R eal-T
r-Model

;l

•"Oota

f~|

1

2) | | ^ y ^

le

The Help Window then appears with detailed information about the selected block:

Configuration Parameters

There are lots of parameters you may want to configure regarding your simulation. Select

―Configuration Parameters…‖ in the Simulation menu

 Edit View Simulatio

 Start Ctrh-

 Configuration Patametets...

The following window appears:

Configuration Parameters: rxample?/Configuration

 lnoort'E^pc"!
j'-Optrnaaiion
 Otagnoibc

^DataVatdty
r-TypeComoiclc*i

Max step sire Relativelofeiance

• Cwwecbvt
Initial step «e:
Zero cros&ng

•H*d«*elncJen>erttfbn
 Petetencing

 Automatical^

 me Woiksho

 consecutive mn

 Custom Code

•••Debug
Consecutive rero
Number ol consecutive

 Hefc>

Here you set important parameters such as:

 Start and Stop time for the simulation

 What kind of Solver to be used (ode45, ode23 etc.)

 Fixed-step/Variable-step

Signal and Systems Lab

 hande

 cross ings

n Format Tools Help

T

 CtrM-E

 data Hamlets* between task

 relative toteiance:
 zero crosangs

 | Ai

 1

•/ Normal

 External

1 1 1 1

 (Ac t i v e)

Selec t

i-Sohe i

s

y

Mode) Re f erereng

p

^••Symbol!

l-fir'.n: :

Vatiatlestc p

Sindatkn tin e

Slail lime: flj

Solve- opticr a

Tw» :

Min ilep lize:

 control:
s

Sofcei diagnostc condol e

Slop bme: 10.0

-Ol.cr : ode45 Prncc)
auto
aulo
auto

 le O
ab.e-lute tdeance: auto

_ bi n --J'ro :

 step «e vblatbnt atoned 1

 atbwed :
10~128'« e
100 0

fi - I p ̂

113 Page 113

1 M

File

 •

 Edit Vie w

Note: Each of the controls on the Configuration Parameters dialog box corresponds to a

configuration parameter that you can set via the ―sim‖ and ―simset‖ commands.

Solvers are numerical integration algorithms that compute the system dynamics over time using

information contained in the model. Simulink provides solvers to support the simulation of a

broad range of systems, including continuous-time (analog), discrete-time (digital), hybrid

(mixed-signal), and multirate systems of any size.

After setting all the steps, system is connected as follows.

 Simulation Format Tools Hel p

D a? 10.0 Norma

Save the model file.

For running the file press the Run button on the menu or Simulation>Start or ctrl+I.

After this, double ccik on the scope to see the output.

It appears as follows.

Signal and Systems Lab

I Ti l

 Q & l

Sirw M M
: Sit e

4

Ready

i n

100% o de4 5

114 Page 114

t •

• Integrator f -lPlI

You can right click to select the option autoscale to view the full output.

Example: Integrator with initial value

Create the following model and run the simulation

File Edit View Simulation Format Tools Help

 & I < ^

Step1: Place the blocks on the model surface

This example use the following blocks:

Signal and Systems Lab

*

 y <4> i M £ 2 e I • 10. 0 Normal

1 1

1 ̂

Integrato i Scope l

Constant

115 Page 115

1

State Name:

0

•

•

•

H

I I

 Enable

Step 2: Configuration

Double-click on the Integrator block. The Parameter window for the Integrator block appears:

 Function Block Parameters: Integrator

Continuous-time integration of th e input signal

Parameter"

External reset: none

Initial condition source:

 Limit output

Upper saturation limit:

 Lower saturation limit:

|-inf

 Sho w saturation port

 Sho w state port

Absolute tolerance:

 Ignore limit an d reset when Imeanmg

 zero crossing detection

 (e.g.. 'position')

Select ―Initial condition source=external‖. The Integrator block now looks like this:

 Constan

Double-click on the Constant block. The Parameter window for the Constant block appears:

Signal and Systems Lab

Intervo r Constant Scope

Integrator

lin F

auto

OK i r Help Apply

1 _

*Q 5

t

116 Page 116

Sampling mode:

0

Output

H

 Interpret

1 -D array. Otherwise,
a vector an d Interpret

 the constant specified by th e 'Constant value'

 output a matrix with the same
 vector parameters as 1

 parameter. If
 -0'

 Source Block Parameters: Constant

 'Constant value' is
 is on , treat th e constant value as a

 dimensions as th e constant

 vector parameters as 1

 Sample based

In the Constant value field we type in the initial value for the integrator, e.g., type the value 1.

Step 3: Wiring

Use the mouse to wire the inputs and outputs of the different blocks.

I n t e g r a t o r

When holding the mouse over an input or an output the mouse change to the following symbol.

Draw a wire between the output on the Constant block to the lower input in the Integrator block,

like this:

Signal and Systems Lab

Constant

value .

 -D

Sample time:

ml

OK Cancel Hel p

Co

Inputs
1

!

•- •
Constant !

Inttguto M

117 Page 117

To

| Do no t sho w thi s

down the CW
 quickly connect blocks,

You could also do like this:

 select th e source btockfs).
 ke y while left-clicking on th e destination

 message again

Wire the rest of the blocks together and you will get the following diagram:

-H2L

Step 4: Simulation

Start the simulation by clicking the ―Start Simulation‖ icon in the Toolbar:

Step 5: The Results

Double-click in the Scope block in order to see the simulated result:

Signal and Systems Lab

 then hold

 block.

Help Close

T
Integrato r Scope l

Constan t

118 Page 118

Example:

Implement the Amplitude Modulation using Simulink

Amplitude Modulation:

Amplitude modulation is the modulation of a wave by varying its amplitude, used chiefly as a

means of radio broadcasting.

Amplitude modulation can be described by the following block diagram

Modulated Signal

We implement the AM technique using MATLAB and Simulink.

%Matlab code for implementing Amplitude Modulation

ts=1e-3;

a=2; % DC offset

t=-2:ts:2;

fm=1; %Frequency of Message signal

fc=15; % Frequency of Carrier Signal

wm=2*pi*fm;

wc=2*pi*fc;

message=sin(wm*t); % Message Signal

Signal and Systems Lab

Modu

lating

Signal

+ DC
offset

*

Carrier
Signal

119 Page 119

carrier=cos(wc*t); % Carrier Signal

am=(2+message).*carrier; % Modulated signal

subplot(311);

plot(t,message);

xlabel('Message Signal');

subplot(312);

plot(t,carrier);

xlabel('Carrier Signal');

subplot(313);

plot(t,am);

xlabel('Amplitute Modulation (AM) Signal');

Output is shown below.

Signal and Systems Lab

120 Page 120

Implementation of Amplitude Modulation using Simulink is shown below.

We need the following blocks for the AM modulation

1. Constant block for DC offset

2. Sine wave for message signal

3. Sine wave for carrier signal

4. Sum for addition of the dc offset and message signal

5. Product for the multiplication of message signal and carrier signal

6. Scope for viewing the output.

 Here is the Simulink block diagram for the AM model.

Signal and Systems Lab

121 Page 121

Followings are the parameter settings for each block.

Constant: Set the constant value to 2.

Message Signal: amplitude=1, frequency=2*pi*1, bias=0, phase=0, sample time=0.01

Carrier Signal: amplitude=1, frequency=2*pi*15, bias=0, phase=pi/2,sample time=0.01

Save and simulate the system. You will get the following output.

Signal and Systems Lab

DC cfhe i

M C U B J * Signi l

B -
Cam*r Sign* !

122 Page 122

...
2

cos 7
2

cos 5
2

((1
2

12
f (x) = cos wt cos 3wt

2 35 7
wt wt

π π

Example: Implement the Fourier series of the following signal using Simulink.

Coefficients for the Fourier series are given below.

an = −con n))

We can write the Fourier series expansion as below

+− + − +

By this, we need the following blocks

Sine wave, Constant, Scope

Construct the model as below.

Signal and Systems Lab

 n

bn = 0

0
1

2
a =

0 77 2n

123 Page 123

Set the following parameters for each block.

Sine wave

Amplitude=2/pi,-2/3pi,2/5pi.-2/7pi,2/9pi

Frequency=1,3,5,7,9

Bias=0

Phase=pi/2

Sample time=0.01

Constant

Constant=0.5

Save and simulate. You will get the following output.

Signal and Systems Lab

r

124 Page 124

Using Vectors and Discrete parts in Simulink

We can use the vectors in Simulink as well.

Example: Suppose we want to implement a system which integrates an input sine wave and the

output is multiplied by a gain factor of 1. We draw the model as below.

Here gain is set to a constant value of 1. Now change the constant value of gain from 1 to a

vector [3:1:10]. This gives a vector in a gain form. From Menu select Format>signal/port

display>signal dimensions. This will show you the length of the vector in model and bold arrow

to represent the vector.

Signal and Systems Lab

Scope

125 Page 125

Simulate the system. You will get vector of outputs.

Analog to digital conversion system (ADC)

To implement ADC, we sample thee analog data using sample and hold block. See below the

model for analog to digital conversion.

Signal and Systems Lab

Scope

126 Page 126

Sine Wave

Zero order hold block

The Zero-Order Hold block samples and holds its input for the specified sample period. The

block accepts one input and generates one output, both of which can be scalar or vector. If the

input is a vector, all elements of the vector are held for the same sample period.

You specify the time between samples with the Sample time parameter. A setting of -1 means

the Sample time is inherited. This block provides a mechanism for discretizing one or more

signals in time.

Set the parameters for both zero-order hold blocks as follows.

Block1: Sampling time=ts1

Block2: Sampling time=ts2

In command prompt define these variables as

ts1=0.2;

ts2=0.5;

Save and simulate the system. You will get the following output.

Signal and Systems Lab

1 w
s

K-

Zero-Cider
Hold

Integrator
Scope

Zero-Order

 Hold l

127 Page 127

Sampling time differences can be observed from both plots.

From the menu choose Format>port/signal display>sample time colors. This option will show

the discrete part of the system in colors as below.

Using Functions in Simulink

User defined functions can also be implemented in Simulink. Such a function is called embedded

function. The function can be introduced no such functional block is available in Simulink.

Signal and Systems Lab

1
s

w
w

Hold

Sine Wave
S DO p 5

Zefo-Of3e>
HolO I

128 Page 128

>|u

*
*

• A

lex t E*o

Q

 T h i s

 Debug

Take the example of ADC system above. Suppose we want to use the outputs from the discrete

system and generate some signaling error. We write the function for the signaling error as below.

function y=sampling_error(u1,u2)

weights=1./[3:1:10];

s1=(u1.*weights')'*u1;

s2=(u2.*weights')'*u2;

y=s1-s2;

Embedded function uses the keyword %#eml as embedded directive for Matlab.

Save the function. And from library import the Embedded Matlab function block to your

model window.

 fe n

 E m b e d d e d

M A T L A B F u n c t i o n

Double-click on the Embedded MATLAB function give us the standard template for an

embedded function:

 E m b e d d e d MATIAB

 Ed* Took

• G £ •o •O

f u n c t i o n y
 b l o c k s u p p o r t s th e E m b e d d e d

 Se e th e h e l p m e n u fo e

Modify the template so it calls your MATLAB function:

Signal and Systems Lab

 Edi tor - Block : I n c r o _ S l / E m b e d d e d
 Window

 c«

 ItATLA B

 MA T

 y

 LAB Fu n c t i o n
 MH

 : M

 ~ f c n (u
 s u b s e t

 d e t a i l s .

%#eml

end

b

 1

p

 3 © i S

i
2

 3
4

S -

)

u ;

129 Page 129

*

k

Q

 Embedded

MA T

 Thi s

D t^ai*

File Ed * J_ext

 Embedded MATLAB

 % & -> c* : M u

 Editor - Block: Intro_SL

 Debug Tools Window Hel p

 @ t

f u n c t i o n y - f c n (u l , u 2 |

 b l o c k s u p p o r t s th e Embedded MATLAB subse t

 Se e th e hel p men u fo r d e t a i l s .

7 • S a mp l i n g e r r o r (u l , u 2)

Wire system like this:

 LA B Function

Save and Run the system. Output is as below.

Signal and Systems Lab

 Embedded MATLAB

 \ &

 Function

 ®

1

2

3

4

5 -

)

;

1 w
s

Zero-Order
Hold

Sine Wave Integrator fe n
V

-1

Zero-Order
rioldl

Scope

130 Page 130

Creating a Subsystem

Simulink model or part of the model can be converted to subsystems to show a summary of the

blocks as a single block.

In above model, select all blocks except the input sine wave and output scope.

Right click and choose create subsystem. The whole model will be shown as below.

Sin e Wav e

Double clicking the subsystem block will show the internal blocks as follows:

Signal and Systems Lab

Subsyste m

131 Page 131

I

Embedded
MA T

Zero-Oder

 LA B Function

You can even create a subsystem for any number of blocks.

Right-click on the block and select ―Edit Mask ‖ in order to open the Mask Editor:

Mas k Editor : Subsystem BB
Icon; Parameters Initialization Documentation

Icon options Drawing commands

transparenc

 Examples of drawing command

Command por t label (label specific ports)

Syntax portJabeK'output',

The Mask Editor allows you to change how the subsystem should look, e.g., the subsystem icon

Signal and Systems Lab

1 w
s

Hold

ntegrsto r

_•
fe n

• y —• { 1)
•2 OuI 1

Zero-Oroer
Hold l

S

Frame

Visible v

y

Opaque -
Rotation

Fixed -

Units

Autoscal e

s

 1, 'xy')

Unmas k OK Cancel Apply

132 Page 132

ed,t

edi t

S i Mas k

Icon I

E g

Ico n Parameters

I

 parameters

 Mas k Editor:

 | Initialization

,

 Subsystem

 | Documentation

Icon options
Drawing commands

p l o t (p e a k s)

Transparency

Set the parameters as follows.

 Editor : Subsystem

 | Initialization | Documentation |

Dialog parameters

Evaluate |

Sample Tm e 1

Sample Time 2 n

Doublecick on the subsystem block to set the parameters.

Signal and Systems Lab

Integrator

 |

—

Frame

Ivstt e

;

Scope

Prompt Variable Typ e Tunable

Ts l W

Ts 2
7

 P

133 Page 133

9

 Function Block Parameters: Subsyst

Subsystem (mask)

Sampling_time

Sampling_time

Help Apply

The whole system looks like below with same output.

__

Signal and Systems Lab

Sins Wav e

em o n

Subsyste m

Parameters

l

2
0

OK Cancel

Subsyste m

134 Page 134

Exercise

NOTE: You can assume appropriate value for the amplitude, frequency of the signal (where

required). But do mention them in Report.

E1: Take White Noise Signal from Source, and split it into high frequency and low frequency

components. Use the Transfer Function block from Continuous and use these transfer functions:

Hook up scopes to the input and the two outputs. Also send the two outputs to the workspace by

using to Workspace block from Sink. Show all the results from scopes.

a) Generate a square signal using Signal Generator and amplify the signal 4 times the original

one. The amplified signal is passed through the following systems simultaneously

An Op-amp based Integrator circuit

A RC circuit having R=10 K and C=0.1 nF

A saturating circuit causing saturation (bounds between 0.5 and -0.5)

Outputs from the three circuits are added to give Resultant signal. The resultant signal is passed

through the system having transfer function (s+1)/ (s2+1.5s+2) to give the final output. Output

should be a sine wave.

Draw the whole system in Simulink. Label the wiring with name of the signal (you can double

click on the wire to name it). Show individual output from each system, final output, and

amplified output.

b) Generate the sine wave using saw tooth wave at the input using same scenario.

Signal and Systems Lab

E2:

•

•

•

135 Page 135

ISRA University Islamabad Campus

Signals & Systems Lab

EXPERIMENT # 11: Graphical User

Interface

Name of Student: …………………………………..

Roll No.: ……………………………………………

Date of Experiment: ………………………………..

Report submitted on: ………………………………..

Marks obtained: ……………………………………

 Remarks: ……………………………………………

 Instructor‘s Signature: ………………………………

Signals and Systems (Lab)

136 Page 136

F~l

4
• GUI

H

The 1
st

G U ID E t em p l a te s

 *

Lab11

Graphical User Interface

Objective

Objective of the lab is to have basic interface of Matlab GUI, its usage and developing a user

desired GUI according to requirement.

 Graphical user interface is a graphical display in one or more windows containing

controls called components that enable a user to perform interactive tasks.

In Matlab, GUI provide a graphical environment in which user can create its own interactive

system. Functional approach in MATLAB GUI is component based. Components involve

different types of buttons, sliders, axes etc.

Accessing GUI in Matlab

 Matlab has separate GUI environment that is called GUIDE (Graphical User Interface

development Environment). It provides a set of tools for creating graphical user interfaces

(GUIs). In Matlab command window type the following command

>>GUIde

You will get the following window open.

 GUIDE Quick S t a r t

Create Ne w GUI O p e n E xi s t i ng G UI

 Bl ank GU I (De f a ul t)

4 -
 w i th A xes and M e n u

 M o d a l Q ue s t i o n D i a l o g

 Save ne w figure as: C : \ U s e r s \ A d m i n i s t r a t o r \ D o c u m e n t s \ M A T L A B \ u n t i t l e d . f i g

 option prompts you to open a blank GUI while below are some example GUIs available

in Matlab library.

Signals and Systems (Lab)

 G U I w i t h U i c o n t ro l s

 Browse. . .

GUI

23

P r ev i ew

OK Cancel Help

137 Page 137

f

f*
• 4 '
^ GU I

4

H

n

 GU ID E Quick Start

Create Ne w GU I O p e n

GUIDE t e m p l a t e s

 Blank GU I (D e f a u l t)

 GU I — M e a s u r e s .

 w i t h Axes an d M e n u Density(D): English unit system
 M o d a l Q u e s t i o n D i a l o g

Volume(V): SJ . unit s y s t e m

Mass(D*V):0

 Save ne w figure as: C : \ U s e r s \ A d m i n i s t r a t o r \ D o c u m e n t s \ M A T L A B \ u n t i t l e d . f i g

Select Blank GUI from the window. You will get the following window open.

Signals and Systems (Lab)

 Exist ing GU I

 w i t h U i c o n t r o l s
 rj

 Q

 0 l b

 Browse . . .

P r e vi e w

 Ib/c u

 cu.in

r ~ Unit s

Calcu lat e R e s e t

OK Cancel Help

138 Page 138

iX

T

fl

@1

(H3

0

Window opened is called GUI Layout Editor. Left side of the window contains different types

of buttons. This area is called component palette. In order to show names of the components,

choose File>Preferences>Show names in component palette.

Components will be shown with their names.

File Edit View Layout Tools Help

Radio Button
 Check Box

 Pop-up Menu

 Toggle Button

 Button Group
 ActiveX Contro

Current Point: [113, 6] Position: [520, 380, 560, 420]

Building a Simple GUI

Suppose we want to build a GUI which takes a frequency input from the user and plots sine wave

of that frequency.

Followings are the steps to create GUI.

Step1: Understanding the Problem/Requirement

For this GUI we need a user given frequency and in return a sine wave is to be generated. From

this we will layout our GUI

Step 2: Preparing a Draft for GUI.

 Second prepare a draft our GUI as per requirement. We need a user given frequency and

in return a plot of sine wave. So we need something to take input from the user and a place to

plot the wave. In addition we may need an executer button which plots the wave or performs the

operation.

Signals and Systems (Lab)

l iX ActiveX Contro l iX ActiveX Contro

untitlprf.fig <= >

^ Select

LUD Push Button
BH E Slider

PF Edit Text

BF Static Text

fij Listbox

[U Table

fa] Panel

l

139 Page 139

axesl

=X

I™]

IH3

m

0

S

Step 3: Laying out GUI components

Second step is to layout your GUI as per draft.

a. For getting an input on run time, we use Edit text button. From the component palette select

 Edit Text and drag it in your layout editor.

b. For plotting we use Axes component. So drag the Axes component and place it on layout

 editor.

c. Drag a Push Button and place it on editor, it will be used as executor.

d. In order to show some title for the GUI and input frequency , drag two Static Text buttons

 and place them in layout in the following manner.

File Edit View Layout Tools Help

111

 Push Button

Radio Button

 Check Box

 Static Text axesl /

 Pop-up Menu

 Toggle Button

1 31 Button Group

 ActiveX Contro

 Step 4: Setting Parameters

Next step is to set the parameters for each block. Choose View>Property Inspector

A new window opens called Property Inspector as shown below.

Signals and Systems (Lab)

axesl / axesl / axesl / /

3(S j * ^

^ Select

Slider

PF Edit Text

£ti Listbox

Table

W Axes

[S Panel

l

5 tatic Text 5 tatic Text

Static :Text Static :Text

Edit Text

Push Button

140 Page 140

^

El

E

®

S

Inspector uicontrol (editl

 BackgroundColor

BeingDelete

BusyActio

ButtonDownFc

[0x0 double array]

 %automatic

%automatic

FontAngle [0 0 9 1.385]
FontName

MS Sans Serif

FontWeight

 ForegroundColo

HandleVisibility

HorizontalAlignmen

Interruptible

KeyPressFcn

ListboxTo

 Position [90 31.846 20 2.615]

SelectionHighlight

 SliderStep

Window contains two columns, 1 column contains the property name while 2

value. We set the parameters one by one.

Push Button

Double click on the push button; its property inspector window will be opened.

a. From the list, choose String property and edit its value from pushbutton to Plot sin(x)

 will be shown as visual name of the button.

b. Now select Font and change its value to 20.

Signals and Systems (Lab)

nd contains its

 "Edit Text")

st

. It

d

n

n

CDat a

Callback

Clipping

CreateFcn

DeleteFcn

Enable

a Extent

FontSiz e

FontUnit s

r

HitTes t

t

p

Ma x

Mi n

String

Style

of f

queue

on

on

normal

8.0

points

normal

on

on

center

on

1.0

1.0

0.0

on

[0.010.1]

Edit Text

pHit

141 Page 141

i;X

T

51

H

(H3

Gi n

a.

c.

a.

c. Select color and choose use your own choice.

d. Below the string there is a property called Tag, change its value to Plotter

name used for programming a function for GUI.

Edit Text

 Set String Value to 0.

b. Font size to 15.

 Color of your own choice

d. Set Tag to input_freq

 Static Text1

 Set String to Sine Wave Generator

b. Font size to 20.

Color of your own choice

 Static text2

a. Set String to Enter Frequency

b. Set font size to 20.

Color of your own choice

Now the GUI looks like below.

File Edit View Layout Tools Help

D 6 B | * % 1
,

 9

 wa v e < o e n e r a o

Enter Freq

 Pop-up Menu

 Toggle Button

 Button Group
 ActiveX Contro Plot Sin(x)

Signals and Systems (Lab)

. Tag is the

c.

c.

 0
,

 | i ! m •# i •

^ Select
1 AV 1 * * _ 1 _ F t + * « u
[SSJ Mush Button r
•™ oiiae r

Radio Button
i • •

0 Check Box i jenc y
[(oil CHi»-Tav +
• • con i ex i
SHE Static Text

0

!U Listbox

El Table
JfliAxe s I 1
111 Panel

l

142 Page 142

c.

Step 5: Saving GUI

Save the GUI by singengui or any name. You will get two files upon saving.

1. Fig file

2. M file

Fig file

It is a binary file that contains all information of the blocks used in GUI and saves it as a

 When you save your GUI layout, GUIDE automatically generates a file of MATLAB
code for controlling the way the GUI works. This file contains code to initialize the GUI and

organizes the GUI callbacks.

 Callbacks are functions that execute in response to user-generated events, such as a

mouse click. Using the MATLAB editor, you can add code to the callbacks to perform the

functions you want. You can also add new functions for callbacks to use.

Step 6: Programming GUI

 As soon as you save it Matlab should generate the skeleton source code for you and the

source code should automatically open in an editor. Before Programming GUI followings are to

be kept in mind.

a. GUI in Matlab in essence is a collection of objects. Each object has a unique handle

 (name). During programming we access the particular object through its handle. Syntax

 to access the object is handles. Tag

 Name of each function for a block is the same as Tag name of the block in GUI.

d. Objects used in GUI have input and output type of string.

e. For getting an input in GUI from external, we use get() functions. Function is used as

 get(H,‘property name‘)

f. We setting a value as output we use set() function. Function is used as set(H,‘property

 name‘,property value)

In our GUI we can define the flow of the GUI as getting the input from the user, generating a

sine wave and plotting it. All can be done if we program the push button which takes input,

generate sine wave and plot it.

Traverse through m file and choose plotter_callback or click the f() but ton on the main meu

which shows you the list of functions available in m file and select plotter_callback. It will take

you to the code of that function. This function is for push button as its Tag was set to plotter.

Signals and Systems (Lab)

 e.g handles.edittext

b. All handles are stored in a structure named hObject.

figure.

M file

143 Page 143

button and converted to number type

Add the following code below the function definition line under the comment lines.

freq=str2num(get(handles.input_freq,'string')); %input from the Edit Text

x=0 :(2*pi)/100:2*pi;

% accessing the axes block for plotting

plot(y)

Since frequency is of numeric type so input from the user is converted to number and saved as

freq. Next we generate a sine wave of freq frequency with x number of points. To plot the sine

wave we access the axes through handles and plot the wave.

Step 7: Running GUI

Save the code and run the fig file. You will get the following GUI

Enter Frequency

0 0. 2 0. 4 0. 6 o.

Enter your desired frequency and click the push button named Plot sin(x). You will see the sine

wave of that frequency.

Signals and Systems (Lab)

y=sin(x*freq);

axes(handles.axes1)

144 Page 144

Signals and Systems (Lab)

145 Page 145

=X

fS

IH3

0

S

 Panel

1 31

a.

Example

Build a Matlab GUI for addition of two user input numbers.

Step1: Understanding the statement

We need two input numbers from the user and their output as a sum

Step2: Drafting GUI

For GUI we would need two buttons for input, one for output, an executer and some for titles of

GUI.

Step3: Laying out GUI

Import the following components in Layout editor.

 2 Edit Text buttons

b. 4 Static Text buttons

1 Push Button

Place them in the following manner.

File Edit View Layout Tools Help

 Push Button

Radio Button
 Check Box

 Pop-up Menu

Toggle Button

 Button Group
 ActiveX Contro

Signals and Systems (Lab)

c.

D & y i # a
9

 £

Static Static Text •

Edit Text Edit Text Static Edit Edit Static Te ; ; ; c t Static Static Static Te ; c t Static " rex t Static " rex t

Push Push Button

L A Select

Slider

PF Edit Text

™ Static Text

m\\ Listbox

Table

W Axe:

l

146 Page 146

Step 4: Parameter Setting

Set the parameters as following.

Static text1: String=Adder, Font=20, Color=choice

Static Text2: String=+, Font=15, color=choice

Static text3: String= =, Font=15, Color=choice

Static text4: String=0, Font=20, Color=choice, Tag=output

Edit text1: String=0, Font=20, Color=choice, Tag=input1

Edit text2: String=0, Font=20, Color=choice, Tag=input2

Push Button: String=Add, Font=20, Color=choice, Tag=adder

Now the GUI looks like it.

3 Crxttto

| •T «f *t *«

Step 5: Programming GUI

Flow of the GUI shows that push button takes input from the user from text buttons, add them

and set it as output. If user doesn‘t input any number, it should be taken as zero.

In m file, select input1_callback function from the functions list and add the following code

below the comment lines.

Signals and Systems (Lab)

. 3 Crxttto . 3 Crxttto

!to 10* Vtem .>,:-• '::'! Hel p

* •

f -M . f -M . f -M .

.
A dd e r

IS . - ' : -
M

0 • 1 1
I ITB H • •

si rw i
*! iuften <jieu p
X - • . > • Contro l

147 Page 147

a=str2num(get(handles.input1,'string'));

input=get(hObject,'string'); %input from the user

b=str2num(get(handles.input2,'string'));
c=a+b;
total=num2str(c);
set(handles.output,'string',total);
guidata(hObject,handles);

if(isempty(input))

 set(hObject,'string','0'); %if input is empty/no input,

consider it zero

guidata(hObject,handles); %saves and update all the handles

This piece of code simply makes sure that the input is well defined. We don‘t want the user to
put in inputs that aren‘t numbers! The last line of code tells the gui to update the handles

structure after the callback is complete. The handles stores all the relevant data related to the
GUI. This function is used so that the handles are always updated after each callback.

Copy the same code to input2_callback.

Now access the adder_callback function for the pushbutton and add the following code.

Explanation

 1. The first two lines of code above take the strings within the Edit Text components, and

 stores them into the variables a and b. Since they are variables of String type, and not

 number type, we cannot simply add them together. Thus, we must convert a and b to

 number type before MATLAB can add them together.

We can convert variables of String type to number type using the MATLAB command
str2num(String argument). Similarly, we can do the opposite using num2str(Number

argument).

2. The following line of code is used to add the two inputs together.

 C=a+b;

3. The next line of code converts the sum variable to String type and stores it into the
 variable total.

 total = num2str(c);

The reason we convert the final answer back into String type is because the Static Text
component does not display variables of number type. If you did not convert it back into a String

type, the GUI would run into an error when it tries to display the answer.

4. Now we just need to send the sum of the two inputs to the answer box that we created.
 This is done using the following line of code. This line of code populates the Static Text

 component with the variable total.
 set(handles.output,'String',total);

5. The last line of code updates the handles structures as was previously mentioned.

Signals and Systems (Lab)

end

148 Page 148

H

guidata(hObject, handles);

Step 6: Save the GUI and Run it.
Following window will open with GUI.

Use different values to verify the answer.

 9 ui

Signals and Systems (Lab)

Ad d

2
% I

149 Page 149

Exercise

E12.1 Build a Matlab GUI which takes input from user, a temperature value in Celsius and returns the

fornhight temprature. Forn hight temprature should be displayed as a stem of hight equal to the

fornhight temprature. Mention the code, output figure and properties of the used functional blocks.

E12.2: Build a Matlab GUI that performs the following operation.

Generation of a square wave of given time period
Generation of a cosine wave of given frequency

GUI should contain a single interface for all the operations which will be selected by the user. Mention
the code, output figures and Properties of the blocks used.

Signals and Systems (Lab)

1.

2.

150 Page 150

