Signal & Systems Lecture #10

 $22nd$ May 18

Z-Transform

The Z-Transform

- \div The z-transform of a sequence x[n] is: $X(z) = \sum x(n)z^{-n}$ *n*=−∞ ∞ ∑
- The z-transform can also be thought of as an operator $Z\{.\}$ that transforms a sequence to a function:

$$
Z\left\{x\left[n\right]\right\} = \sum_{n=-\infty}^{\infty} x\left[n\right]z^{-n} = X\left(z\right)
$$

- \cdot In both cases z is a continuous complex variable.
- ◆ The z-transform operation is denoted as: $x(n)$ → $X(z)$ *z*
- Where "z" is the complex number. Therefore, we may write z as:

$$
z=re^{j\omega}
$$

The Z-Transform (cont.)

• Where r and w belongs to Real number. When r=-1, the ztransform of a discrete-time signal becomes:

$$
X\left(e^{j\omega}\right)=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}
$$

- \cdot Therefore, the DTFT is a special case of the z-transform.
- ❖ Pictorially, we can view DTFT as the z-transform evaluated on the unit circle:

The Z-Transform (cont.)

• When $r \neq 1$, the z-transform is equivalent to:

$$
X(re^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n](re^{j\omega})^{-n}
$$

$$
= \sum_{n=-\infty}^{\infty} (r^{-n}x[n])e^{-j\omega n}
$$

$$
= F[r^{-n}x[n]]
$$

- Which is the DTFT of the signal r^{-n} x[n].
- ◆ However, we know that the DTFT does not always exist. It exists only when the signal is square summable, or satisfies the Dirichlet conditions.
- ❖ Therefore, $X(z)$ does not always converge. It converges only for some values of r. this range of r is called the region of convergence (ROC).

Region of Convergence (ROC)

- ◆ The region of convergence are the values of for which the ztransform converges.
- ❖ Z-transform is an infinite power series which is not always convergent for all values of z.
- ❖ Therefore, the region of convergence should be mentioned along with the z-transformation.
- ◆ The Region of Convergence (ROC) of the z-transform is the set of z such that $X(z)$ converges, i.e.,

$$
\sum_{n=-\infty}^{\infty} |x[n]| r^{-n} < \infty
$$

Example #1

- ❖ Z-transform of right-sided exponential sequences.
- Consider the signal $x[n] = a^n u[n]$. Mathematically it can be written as: $x(n) = \begin{cases} a^n & \text{for } n \ge 0 \\ 0 & \text{if } n \ge 0 \end{cases}$ 0 *for n* < 0 $\sqrt{ }$ ⎨ $\overline{}$ $\overline{\mathsf{I}}$
- \cdot This sequence exists for positive values of n:

Example #1 (cont.)

 \div The z-transform of x[n] is given $\mathcal{B}\left(\zeta\right) = \sum a^n u[n]z^{-n}$ −∞ ∞ ∑

$$
=\sum_{n=0}^{\infty}\left(az^{-1}\right)^{n}
$$

 \cdot Therefore, X(z) converges if $\sum (az^{-1})^n < \infty$. From geometric series, we know that: *n n*=0 ∞ $\sum (az^{-1})^n < \infty$ ∞

$$
\sum_{n=0}^{\infty} \left(a z^{-1} \right)^n = \frac{1}{1 - a z^{-1}}
$$

 $\cdot \cdot$ When $|az^{-1}| < 1$, or equivalently $|z| > |a|$. So, $X(z) =$ 1 $1 - az^{-1}$

Example #1 (cont.)

 $\cdot \cdot$ With ROC being the set of z such that $|z| > |a|$. As shown below:

Example #2

- Consider the signal $x[n] = -a^n \cup [-n-1]$ with $o < a < 1$. Which is the left sided exponential sequence and it can be determined $\mathbf{mathematically as:}$ $x(n) = \begin{cases} -a^n u(-n-1) & \text{for } n \leq 0 \\ 0 & \text{otherwise} \end{cases}$ 0 $for n>0$ $\sqrt{ }$ ⎨ \overline{a} $\overline{\mathsf{I}}$
- ❖ This sequence exists only for negative values of n.

Example #2 (cont.)

∴ The z-transform of x[n] is:

\n
$$
X(z) = -\sum_{n=-\infty}^{\infty} a^n u[-n-1]z^{-n}
$$

◆ Therefore, X(z) converges when |a⁻¹z| <1, or equivalently |z| < |a|. In this case:

$$
X(z) = 1 - \frac{1}{1 - a^{-1}z} = \frac{1}{1 - az^{-1}}
$$

Example #2 (cont.)

- \cdot Witch ROC being the set of z such that $|z|$ < $|a|$.
- Note that the z-transform is the same as that of Example 1, the only difference is the ROC. Which is shown below as:

Properties of ROC

Properties of ROC

- *** Property #1:** The ROC is a ring or disk in the z-plane center at origin.
- **Exable Triangerty #2:** The Fourier transform of x|n| converges absolutely if and only if the ROC of the z-transform includes the unit circle.
- **Example 7:** The ROC contains no poles.
- *** Property #4:** If x|n| is a finite impulse response (FIR), then the ROC is the entire z-plane.
- ***** Property #5: If x|n| is a right-sided sequence then the ROC extends outwards from the outermost finite pole to infinity.

Properties of ROC

- **Exaurable Froperty #6:** If x|n| is left sided then the ROC extends inward from the innermost nonzero pole to $z=0$.
- **→ Property #7:** If X(z) is rational, i.e., X(z)=A(z) / B(z) where A(z) and B(z) are polynomials, and if $x[n]$ is right-sided, then the ROC is the region outside the outermost pole.

Properties of Z-Transform

Linearity

• This property states that if $x_1(n) \leftrightarrow X_1(z)$ and $x_2(n) \leftrightarrow X_2(z)$, then *z* $\Longleftrightarrow X_1(z)$ and $x_2(n) \Longleftrightarrow X_2(z)$ *z*

 $a_1x_1(n) + a_2x_2(n)$ *z* $\Leftrightarrow a_1 X_1(z) + a_2 X_2(z)$

 $\cdot \cdot \cdot$ Where a_1 and a_2 are constants.

Time Scaling

◆ This property of z-transform states that if $x(n) \leftrightarrow X(z)$, then we can write:

z

$$
x(n-k)\Longleftrightarrow z^{-k}X(z)
$$

$\cdot \cdot$ Where k is an integer which is shift in time in x(n) in samples.

Scaling in Z-Domain

* This property states that if:

$$
x(n) \xrightarrow{z} X(z) \quad ROC: r_1 < |z| < r_2
$$

then
$$
a^n x(n) \Longleftrightarrow X\left(\frac{z}{a}\right) ROC : |a|r_1 < |z| < |a|r_2
$$

◆ Where a is a constant.

Time Reversal

❖ This property states that if:

$$
x(n) \xrightarrow{z} X(z) \qquad ROC: r_1 < |z| < r_2
$$

❖ Then,

$$
x(-n) \Leftrightarrow X(z^{-1}) \quad ROC: \frac{1}{r_1} < |z| < \frac{1}{r_2}
$$

Differentiation in Z-Domain

 \cdot This property states that if $x(n) \in X(z)$, then: *z*

nx(*n*) *z* ↔− *^z d*{*X*(*z*)} *dz*

Convolution

→ This property states that if $x_1(n) \leftrightarrow X_1(z)$ and $x_2(n) \leftrightarrow X_2(z)$ then: *z* $\mathcal{X}_1(z)$ and $x_2(n)$ $\bigstar\mathcal{X}_{2}(z)$

*x*₁(*n*) * *x*₂(*n*) ← > *X*₁(*z*)*X*₂(*z*) *z*

Example #3

- $\bullet \bullet$ Find the convolution of sequences: $x_1 = \{1, -3, 2\}$ *and* $x_2 = \{1, 2, 1\}$
- ❖ Solution:

◆ Step 1: Determine z-transform of individual signal sequences:

$$
X_1(z) = Z[x_1(n)] = \sum_{n=0}^{2} x_1(n)z^{-n} = x_1(0)z^0 + x_1(1)z^{-1} + x_1(2)z^{-2}
$$

= $1z^0 - 3z^{-1} + 2z^{-2} = 1 - 3z^{-1} + 2z^{-2}$
and $X_2(z) = Z[x_2(n)] = \sum_{n=0}^{2} x_2(n)z^{-n} = x_2(0)z^0 + x_2(1)z^{-1} + x_2(2)z^{-2}$
= $1z^0 + 2z^{-1} + 1z^{-2} = 1 + 2z^{-1} + 1z^{-2}$

Example #3 (cont.)

• Step 2: Multiplication of $X_1(z)$ and $X_2(z)$:

$$
X(z) = X_1(z)X_2(z) = (1 - 3z^{-1} + 2z^{-2})(1 + 2z^{-1} + 1z^{-2})
$$

= 1 - z⁻¹ - 3z⁻² + z⁻³ + 2z⁻⁴

 \div Step 3: Let us take inverse z-transform of $X(z)$:

$$
x(n) = IZT\left[1 - z^{-1} - 3z^{-2} + z^{-3} + 2z^{-4}\right] = \{1, -1, -3, 1, 2\}
$$

Inverse Z-Transform

Inverse Z-Transform

 \div The inverse Z-transform is as follows:

$$
x[n] = \frac{1}{2\pi j} \oint X(z) z^{n-1} dz
$$

- ❖ Methods to obtain Inverse Z-transform:
	- If $X(z)$ is rational, we can use expanding the rational algebraic into a linear combination of lower order terms and then one may use:
		- \div If ROC is out of pole $z = a_i$:

$$
X(z) = \frac{A_i}{1 - a_i z^{-1}} \to x[n] = A_i a_i u[n]
$$

 $\cdot \cdot$ If ROC is inside of $z = a_i$:

$$
X(z) = \frac{A_i}{1 - a_i z^{-1}} \to x[n] = -A_i a_i u[-n-1]
$$

 \cdot Do not forget to consider ROC in obtaining inverse of ZT.

Inverse Z-Transform (cont.)

- \cdot If X(z) is non-rational, use Power series expansion of X(z), then apply δ [n+n_o] \leftarrow > z^{no}
- $\cdot \cdot$ If $X(z)$ is rational, power series can be obtained by long division.
- If $X(z)$ is a rational function of z, i.e., a ratio of polynomials, we can also use partial fraction expansion to express $X(z)$ as a sum of simple terms for which the inverse transform may be recognized by inspection.
- \cdot The ROC plays a critical role in this process.

Example #4

❖ Consider the z-transform:

Example #5

◆ Consider:

$$
X(z) = \frac{1}{1 - az^{-1}}, |z| > |a|
$$

❖ Expand in a power series by long division.

Thank You!