

Circuit Analysis-II

Impedance & Admittance

Impedance

 \checkmark The voltage-current relations for the three passive elements are:

$$
\overline{V} = R\overline{I}, \quad \overline{V} = j\omega L\overline{I}, \quad \overline{V} = \frac{I}{j\omega C}
$$

 \checkmark These equations may be written in terms of the ratio of the phasor voltage to the phasor current as:

$$
\frac{\overline{V}}{\overline{I}} = R, \quad \frac{\overline{V}}{\overline{I}} = j\omega L, \quad \frac{\overline{V}}{\overline{I}} = \frac{1}{j\omega C}
$$

 \checkmark From these three expressions we obtain Ohm's law in phasor form for any type of element:

$$
Z = \frac{\overline{V}}{\overline{I}} \quad or \quad \overline{V} = Z\overline{I}
$$

Impedance (cont.)

- \checkmark Where Z is a frequency-dependent quantity known as impedance, measured in ohms.
- \checkmark The impedance Z of a circuit is the ratio of the phasor voltage **V** to the phasor current **I,** measured in ohms Ω.
- \checkmark The impedance represents the opposition that the circuit exhibits to the flow of sinusoidal current.
- \checkmark The impedance is the ratio of two Phasors, but it is nit a phasor because it dose not corresponds to a sinusoidal varying quantity.
- \checkmark Consider two extreme cases of angular frequency:
	- \checkmark When ω =0 Z_i =0 and Z_c $\to \infty$ confirming that inductor act as a short circuit while capacitor acts like an open circuit.
	- \checkmark When ω $\to\infty$ Z_i $\to\infty$ and Z_c=0, indicates that the inductor is an open circuit while capacitor is a short circuit.

Impedance (cont.)

 \checkmark As a complex quantity impedance can be expressed as:

$$
Z = R + jX
$$

\n
$$
Z = |Z| \angle \theta
$$

\nwhere $|Z| = \sqrt{R^2 + X^2}$, $\theta = \tan^{-1} \frac{X}{R}$
\nand $R = |Z| \cos \theta$, $X = |Z| \sin \theta$

 \checkmark Where R=Re **Z** is the resistance and X=Im **Z** is the reactance.

- \checkmark The reactance X may be positive or negative.
- \checkmark The impedance is inductive when X is positive or capacitive when X is negative.
- \checkmark Thus, impedance Z=R+jX is said to be inductive or lagging since current lags voltage.

Impedance (cont.)

- \checkmark While impedance Z=R-jX is capacitive or leading because current leads voltage.
- \checkmark Impedances and admittances of passive elements:

Admittance

- \checkmark The admittance Y is the reciprocal of impedance, measured in siemens (S).
- \checkmark The admittance Y of an element is the ratio of the phasor current through it to the phasor voltage across it:

$$
Y = \frac{1}{Z} = \frac{\overline{I}}{\overline{V}}
$$

٥ Example #1 \checkmark Find v(t) and i(t) in the circuit shown below: $5~\Omega$ $0.1\;\mathrm{F}$ \pm $v_s = 10 \cos 4t$

Example #3

 \checkmark For the circuit below write the phasor expression for the impedance in both rectangular and polar form:

Analysis of Series Circuits

Circuit Analysis-II Lecture # 7 Monday 14th May, 18

Series RC & RL Circuits

 \checkmark For the analysis of series RC circuits Ohm's law can be used, which involves the phasor quantities of **Z**, **V**, and **I.**

 \checkmark The three equivalent forms of Ohm's law are as follows:

$$
\overline{V} = \overline{IZ}, \quad \overline{I} = \frac{\overline{V}}{Z}, \quad Z = \frac{\overline{V}}{\overline{I}}
$$

Example #4

 \checkmark Determine the current in the circuit shown below, and draw a phasor diagram showing the relation between source voltage and current.

Example #5

 \checkmark The current in figure below is expressed in polar form as . Determine the source voltage expressed in polar form, and draw a phasor diagram showing relationship between the source voltage and the current. $|\bar{I} = 0.2\angle0^{\circ}$ mA

Phase Relationships of Current & Voltages

Series RC Circuit

- \checkmark In a series RC circuit, the current is the same through both the resistor and capacitor.
- \checkmark Thus, the resistor voltage is in phase with the current and the capacitor voltage lags the current by 90°.
- \checkmark Therefore, there is a phase difference of 90 $^{\circ}$ between the resistor voltage, V_R and the capacitor voltage V_C .

Series RC Circuit (cont.)

- \checkmark From Kirchhoff's voltage law, the sum of the voltage drops must equal the applied voltage.
- \checkmark Since V_R and V_C are not in phase with each other they must be added as phasor quantities.
- \checkmark Voltage phasor diagram for a series RC circuit is as follows:

Variation of Impedance & Phase Angle with Frequency

(a) As frequency is increased, Z decreases as X_C decreases, causing I and V_R to increase and V_C to decrease.

(b) As frequency is decreased, Z increases as X_C increases, causing I and V_R to decrease and V_C to increase.

Variation of Impedance & Phase Angle with Frequency (cont.)

By watching these two meters, you can see what Z is doing: I is increasing and $V₇$ is constant. Thus, Z is decreasing.

By watching these two meters, you can see what X_C is doing: I is increasing and V_C is decreasing. Thus, X_C is decreasing.

 $\bigvee X_C = \frac{V_C}{I}$

Phase Relationships of RL Series Circuit

- \checkmark In a series RL circuit, the current is the same through both the resistor and the inductor.
- \checkmark Thus, the resistor voltage is in phase with the current and the inductor voltage leads the current by 90°.
- \checkmark Therefore, there is a phase difference of 90 $^{\circ}$ between the resistor voltage V_R and the inductor voltage V_L as shown below:

Phase Relationships of RL Series Circuit (cont.)

- \checkmark The sum of the voltage drops must equal to the applied voltage.
- \checkmark However, since V_R and V_L are not in phase with each other, they must be added as phasor quantities with V_{I} leading V_{R} by 90°.
- \checkmark Then V_s is the phasor sum of V_R and V_L:

 $V_s = V_R + jV_L$

 \checkmark In the polar form it can be expressed as:

$$
V_s = \sqrt{V_R^2 + V_L^2} \angle \tan^{-1} \left(\frac{V_L}{V_R}\right)
$$

Variation of Impedance & Phase Angle with Frequency

- \checkmark As we know inductive reactance varies directly with frequency.
- \checkmark When X₁ increases, the magnitude of the total impedance also increases and when X_l decreases the magnitude of the total impedance decreases.
- \checkmark Thus, Z is directly dependent in frequency.
- \checkmark The phase angle θ also varies directly with frequency because θ= tan⁻¹ (X_L/R). As X_L increases with frequency so does θ and vice versa.

RC with Lag & Lead Current

RC Lag Circuit

 \checkmark An RC lag circuit is a phase shift circuit in which the output voltage lags the input voltage by a specified amount.

RC Lag Circuit (cont.)

\checkmark Phase Difference Between Input and Output:

- \checkmark θ is the phase angle between I and V_{in}.
- \checkmark The angle between V_{out} and V_{in} is designated ϕ and is developed as follows:
- \checkmark The polar expressions for the input voltage and the current are V_{in} <0° and O<θ respectively.
- \checkmark The output voltage in polar form is:

$$
V_{out} = \left(I \angle \theta \right) \left(X_C \angle -90^\circ \right) = IX_C \angle \left(-90^\circ + \theta \right)
$$

 \checkmark The angle ϕ between the input and output is:

$$
\phi = -90 + \tan^{-1}\left(\frac{X_C}{R}\right)
$$

 \checkmark This angle can also be expressed as:

$$
\phi = -\tan^{-1}\left(\frac{R}{X_C}\right)
$$

 \checkmark This angle is always negative, indicating that the output voltage lags the input voltage as shown below:

 \checkmark To evaluate the output voltage in terms of its magnitude, visualize the RC lag circuit as a voltage divider.

$$
V_{out} = \left(\frac{X_C}{\sqrt{R^2 + X_C^2}}\right) V_{in}
$$

 \checkmark The phasor expression for the output voltage of an RC lag circuit is:

$$
V_{out} = V_{out} \angle \phi
$$

Example #6

О

 \checkmark Determine the amount of phase lag from input to output in following lag circuit:

RC Lead Circuit

 \checkmark An RC lead circuit is a phase shift circuit in which the output voltage leads the input voltage by a specified amount.

 \checkmark When the output of a series RC circuit is taken across the resistor rather than across the capacitor it becomes a lead circuit.

Phase Difference b/w Input & **Output**

- \checkmark In series RC circuit, the current leads the input voltage.
- \checkmark Also the resistor voltage is in phase with the current.
- \checkmark Since the output voltage is taken across the resistor, the output leads the input.
- \checkmark The amount of phase difference b/w the input and output and the magnitude of the output voltage in the lead circuit are dependent on the relative values of the resistance and the capacitive reactance.
- \checkmark When the input voltage is assigned a reference angle of 0°, the angle of the output voltage is the same as θ because the resistor voltage and the current are in phase with each other.
- \checkmark Therefore, since φ=θ, the expression is: _{φ=tan⁻¹ $\left(\frac{X_C}{R}\right)$} $\left(\frac{X_c}{R}\right)$ ⎝

Circuit Analysis-II Lecture # 7 Monday 14th May, 18

⎠

Magnitude of the Output Voltage

 \checkmark The voltage divider formula for the RC lead circuit is:

$$
V_{out} = \left(\frac{R}{\sqrt{R^2 + X_C^2}}\right) V_{in}
$$

 \checkmark The expression for the output voltage in phasor form is:

$$
V_{out} = V_{out} \angle \phi
$$

RL with Lag & Lead Current

RL Lead Circuit

- \checkmark An RL lead circuit is a phase shift circuit in which the output voltage leads the input voltage by a specified amount.
- \checkmark The source voltage is the input V_{in}.
- \checkmark As θ is the angle between the current and the input voltage, it is also the angle between the resistor voltage and the input voltage because V_R and I are in phase.
- \checkmark Since V_I leads V_R by 90°, the phase angle between the inductor voltage and the input voltage is the difference between 90° and θ.
- \checkmark The inductor voltage is the output; it leads the input and thus creating a basic lead circuit.

RL Lead Circuit (cont.)

Phase Difference B/w Input and Output:

 \checkmark The polar expressions for the input voltage and the current are V_{in} <0° and I<-0 respectively.

 \checkmark The output voltage in polar form is:

$$
V_{out} = \left(I\angle -\theta\right)\left(X_L\angle 90^\circ\right) = IX_L\angle \left(90^\circ - \theta\right)
$$

RL Lead Circuit (cont.)

\checkmark The angle ϕ between the input and output is:

$$
\phi = 90 - \tan^{-1}\left(\frac{X_L}{R}\right)
$$
 or $\phi = \tan^{-1}\left(\frac{R}{X_L}\right)$

 \checkmark The voltage divider formula is:

$$
V_{out} = \left(\frac{X_L}{\sqrt{R^2 + X_L^2}}\right) V_{in}
$$

 \checkmark The phasor expression for the output voltage of an RL lead circuit is:

$$
V_{out} = V_{out} \angle \phi
$$

Example #8

 \checkmark For the lead circuit shown below, determine the output voltage in phasor form when the input voltage has an rms value of 5V. Draw the input and output voltage waveforms showing their peak values.

 $\sqrt{\frac{1}{\pi}}$ The inductive X_L is 314 $\overline{\Omega}$.

RL Lag Circuit

 \checkmark An RL lag circuit is a phase shift circuit in which the output voltage lags the input voltage by a specified amount. \checkmark When the output of a series RL circuit is taken across the resistor rather than the inductor, it becomes a lag circuit.

RL Lag Circuit (cont.)

Phase Difference b/w Input & Output:

- \checkmark Since the output voltage is taken across the resistor, the output lags the input.
- \checkmark When the input voltage is assigned a reference angle of 0°, the angle of the voltage with respect to the input voltage equals θ because the resistor voltage and the current are in phase with each other.
- \checkmark The expression for the angle is:

$$
\phi = -\tan^{-1}\left(\frac{X_L}{R}\right)
$$

RL Lag Circuit (cont.)

- \checkmark Magnitude of the Output Voltage:
- \checkmark The voltage divider formula is:

$$
V_{out} = \left(\frac{R}{\sqrt{R^2 + X_L^2}}\right) V_{in}
$$

 \checkmark The expression for the output voltage in phasor form is:

$$
V_{out} = V_{out} \angle \phi
$$

Example #9

- \checkmark The input voltage in the figure below, has an rms value of 10V. Determine the phasor expression for the output voltage. Draw the input and output voltage waveforms.
- \checkmark The inductive X_L is 628Ω.

Thank You

Circuit Analysis-II **Recture 2** Monday 14th May, 18