

Circuit Analysis-II

Impedance & Admittance

Impedance of Parallel RC **Circuits**

 \checkmark A basic parallel RC circuit connected to an AC voltage source is shown below:

 $\overline{\smash{y}}$ Since there are only two components, R and C, the total impedance can be found from the product-over-sum rule:

$$
Z = \frac{R\angle 0^{\circ} \left(X_c \angle -90^{\circ} \right)}{R - jX_c}
$$

$$
Z = \frac{\left(RX_C\right) \angle \left(0^\circ - 90^\circ\right)}{\sqrt{R^2 + X_C^2} \angle - \tan^{-1}\left(\frac{X_C}{R}\right)}
$$

Impedance of Parallel RC Circuits (cont.)

 $\sqrt{2}$ By dividing the magnitude expression in the numerator by that in the denominator and by subtracting the angle in the denominator from that in the numerator, you get:

$$
Z = \left(\frac{RY_C}{\sqrt{R^2 + X_C^2}}\right) \angle \left(-90^\circ + \tan^{-1}\left(\frac{X_C}{R}\right)\right)
$$

 \checkmark Equivalently, this expression can be written as:

$$
Z = \left(\frac{RY_C}{\sqrt{R^2 + X_C^2}}\right) \angle \left(-\tan^{-1}\left(\frac{X_C}{R}\right)\right)
$$

Admittance of Parallel RC **Circuits**

ü Conductance, **G**, is the reciprocal of resistance. The phasor expression is expressed as:

$$
\overline{G} = \frac{1}{R\angle 0^{\circ}} = G\angle 0^{\circ}
$$

 \checkmark Capacitive susceptance (\mathbf{B}_{c}) is the reciprocal of capacitive reactance. The phasor expression for capacitive susceptance is:

$$
\overline{B}_C = \frac{1}{X_C \angle -90^\circ} = B_C \angle 90^\circ = +jB_C
$$

 \checkmark Admittance (**Y**) is the reciprocal of impedance:

$$
\overline{Y} = \frac{1}{Z \angle \pm \theta} = Y \angle \mp \theta
$$

Admittance of Parallel RC Circuits (cont.)

- \checkmark The unit of each of these terns is the siemens (S), which is the reciprocal of the ohm.
- \checkmark In working with parallel circuits, it is often easier to use conductance (G), capacitive susceptance (B_c) and admittance (B) rather than resistance (R) , capacitive reactance (X_C) and impedance (Z).
- \checkmark In a parallel RC circuit the total admittance is simply the phasor sum of the conductance and capacitive susceptance:

$$
\overline{Y} = G + jB_C
$$

Example #1

 \checkmark Determine the total admittance (**Y**) and then convert it to total impedance (**Z**) in figure shown below. Draw the admittance phasor diagram:

Impedance of Parallel RL **Circuits**

 \checkmark A basic parallel RL circuit connected to an AC voltage source is shown below:

 \checkmark The expression for the total impedance of a two-component parallel RL circuit is as follows:

$$
\overline{Z} = \left(\frac{RY_L}{\sqrt{R^2 + X_L^2}}\right) \angle \tan^{-1} \left(\frac{R}{X_L}\right)
$$

Admittance of Parallel RL **Circuits**

 \checkmark For parallel RL circuits, the phasor expression for inductive susceptance (**B**_L) is:

$$
\overline{B}_{L} = \frac{1}{X_{L} \angle 90^{\circ}} = B_{L} \angle -90^{\circ} = -jB_{L}
$$

 \checkmark The phasor expression for admittance is:

$$
\overline{Y} = \frac{1}{Z \angle \pm \theta} = Y \angle \mp \theta
$$

 \checkmark The total impedance is the phasor sum of the conductance and the inductive susceptance:

$$
\left| \overline{Y} = G - jB_{L} \right|
$$

Admittance of Parallel RL Circuits (cont.)

RLC Series & Parallel Circuits

Impedance of Series RLC **Circuits**

 \checkmark A series RLC circuit is shown below:

- \checkmark Inductance reactance (X_i) causes the total current to lag the applied voltage.
- \checkmark Capacitive reactance (X_c) has the opposite effect: it causes the current to lead the voltage.
- \checkmark Thus X_L and X_C tend to offset each other, when they are equal they cancel and the total reactance is zero. $X_{\text{tot}} = |X_1 - X_C|$.

Impedance of Series RLC Circuits (cont.)

- \overline{X} When $X_1 > X_C$ the circuit is predominantly inductive, and when X_{C} >X_i the circuit is predominantly capacitive.
- \checkmark The total impedance for the series RLC circuit is stated in rectangular and polar form as follows:

$$
\overline{Z} = R + jX_L - jX_C
$$

$$
\overline{Z} = \sqrt{R^2 + (X_L - X_C)^2} \angle \pm \tan^{-1} \left(\frac{X_{tot}}{R} \right)
$$

Example #2

 \checkmark For the series RLC circuit in the figure below, determine the total impedance. Express it in both rectangular and polar forms:

Impedance of Parallel RLC **Circuits**

 \checkmark The parallel RLC circuit is shown below:

 \checkmark The total impedance for RLC circuit is as below:

$$
\frac{1}{\overline{Z}} = \frac{1}{R\angle 0^{\circ}} + \frac{1}{X_{L}\angle 90^{\circ}} + \frac{1}{X_{C}\angle -90^{\circ}}
$$

$$
\overline{Z} = \frac{1}{\frac{1}{R\angle 0^{\circ}} + \frac{1}{X_{L}\angle 90^{\circ}} + \frac{1}{X_{C}\angle -90^{\circ}}}
$$

Admittance of Parallel RLC **Circuits**

 \checkmark The formulas of conductance (G), capacitive susceptance (B_C) , inductive susceptance (B_L) and admittance (Y) are as follows:

$$
\overline{G} = \frac{1}{R\angle 0^{\circ}} = G\angle 0^{\circ}
$$
\n
$$
\overline{B}_C = \frac{1}{X_C\angle - 90^{\circ}} = B_C < 90^{\circ} = jB_C
$$
\n
$$
\overline{B}_L = \frac{1}{X_L\angle 90^{\circ}} = B_L < -90^{\circ} = -jB_L
$$
\n
$$
\overline{Y} = \frac{1}{Z\angle \pm \theta} = \overline{Y}\angle \mp \theta = G + jB_C - jB_L
$$

 \checkmark Unit of each of these quantities is the siemens (S).

Example #3

 \checkmark For the RLC circuit in figure below, determine the conductance, capacitive susceptamce, inductive susceptance and total admittance. Also, determine the impedance.

Analysis of Parallel Circuits

Parallel RC Circuits

- \checkmark In the analysis of parallel circuits, the Ohm's law formulas using impedance can be rewritten for admittance using the relation Y= 1/Z.
- \checkmark The formulas are:

$$
\overline{V} = \frac{\overline{I}}{\overline{Y}}
$$

$$
\overline{I} = \overline{V}\overline{Y}
$$

$$
\overline{V} = \frac{\overline{I}}{\overline{V}}
$$

Phase Relationships of Current & Voltages

 \checkmark The currents in a basic parallel RC circuit is shown below:

 \checkmark The total current I_{tot}, divides at the junction into the two branch currents I_R and I_C .

 \checkmark The applied voltage V_s , appears across both the resistive and the capacitive branches, so V_s , V_R and V_C are all in phase and of the same magnitude.

Phase Relationships of Current & Voltages (cont.)

- \checkmark The current through the resistor is in phase with the voltage.
- \checkmark The current through the capacitor leads the voltage and thus the resistive current by 90°.
- \checkmark By Kirchhoff's current law, the total current is the phasor sum of the two branch currents.
- \checkmark The total current is expressed as:

$$
\overline{I}_{tot} = \overline{I}_R + j\overline{I}_C
$$
\n
$$
\overline{I}_{tot} = \sqrt{I_R^2 + I_C^2} \angle \tan^{-1} \left(\frac{I_C}{I_R} \right)
$$

Phase Relationships of Current & Voltages (cont.)

 \checkmark Below is the complete current and voltage phasor diagram:

Conversion From Parallel to Series

- \checkmark For every parallel RC circuit there is an equivalent series RC circuit for a given frequency.
- \checkmark Two circuits are considered equivalent when they both present an equal impedance at their terminals, i.e., the magnitude of impedance and the phase angle are identical.
- \checkmark To obtain the equivalent series circuit for a given parallel RC circuit, first find the impedance and phase angle of the parallel circuit.
- \checkmark Then use the values of Z and θ to construct the impedance triangle. $=$ Z cos

Circuit Analysis-II Circuit Analysis-II Lecture # 8 Monday 21st May, 18

Parallel RL Circuits

- Phase Relationships of Currents & Voltages:
- \checkmark The basic parallel RL circuit is shown below:

 \checkmark The current through the resistor is in phase with the voltage. \checkmark The current through the inductor lags the voltage and the resistor current by 90°.

Parallel RL Circuits (cont.)

 \checkmark The total current is the phasor sum of the two branches. The total current is expressed as:

$$
\overline{I}_{tot} = \overline{I}_R - j\overline{I}_L
$$
\n
$$
\overline{I}_{tot} = \sqrt{I_R^2 + I_L^2} \angle - \tan^{-1} \left(\frac{I_L}{I_R} \right)
$$

 \checkmark The phasor diagram for the current and voltage are shown below:

Example #5

 \checkmark Determine the value of each current in figure below and describe the phase relationship of each with the applied voltage. Draw the current phasor diagram.

T_{tot}	$ I_R$	$I_L $	
V_s	$\sum_{12\angle 0^\circ} V$	$\sum_{220 \Omega}^R$	$\sum_{150 \Omega}^{X_L}$
\equiv	\equiv	\equiv	

Analysis of RLC Circuits

Series RLC Circuits

 \checkmark The total reactance in RLC circuit behaves as follows:

- \checkmark Starting at very low frequency, X_c is high and X_i is low and the circuit is predominantly capacitive.
- \checkmark As the frequency increased, X_c decreases and X_i increases until a value is reached where $X_{\text{C}}=X_{\text{L}}$ and the two reactance cancel making the circuit purely resistive.
- \checkmark This condition is series resonance.
- \checkmark As the frequency is increased further X_1 becomes greater than X_C and the circuit is predominantly inductive.

Series RLC Circuits (cont.)

 \checkmark As shown below:

- \vee In series RLC circuit the capacitor voltage and the inductor voltage are always 180° out of phase with each other.
- \checkmark For this reason V_c and V_L subtract from each other and thus the voltage across L and C combined is always less than the larger individual voltage across either element.

Parallel RLC Circuits

- \checkmark As we know the capacitive reactance varies inversely with frequency and that inductive reactance varies directly with frequency.
- \checkmark In a parallel RLC circuit at low frequencies the inductive reactance is less than the capacitive reactance, therefore the circuit is inductive.
- \checkmark As the frequency is increased X₁ increases and X_c decreased until a value is reached where $X_1=X_{\text{C}}$. This is the point of parallel resonance.
- \checkmark As the frequency is increased further, X_c becomes smaller than X_l and the circuit becomes capacitive.

Parallel RLC Circuits (cont.)

- \checkmark The current in the capacitive branch and the current in the inductive branch are always 180° out of phase with each other.
- \checkmark The total current is actually the difference in their magnitudes.
- \checkmark Thus the total current into the parallel branches of L and C is always less than the largest individual branch current.
- \checkmark The current in the resistive branch is always 90 $^{\circ}$ out of phase with both reactive currents.

Parallel RLC Circuits (cont.)

 \checkmark The total current can be expressed as:

$$
\overline{I}_{\text{tot}} = \sqrt{I_R^2 + \left(I_C - I_L\right)^2} \angle \tan^{-1} \left(\frac{I_{\text{CL}}}{I_R}\right)
$$

 \checkmark Where I_{CL} is I_C-I_L the total current into the L and C branches.

Example #7

 \checkmark For the circuit shown below, find each branch current and the total current. Draw a diagram of their relationship.

$$
\sum_{S\angle 0^{\circ} \check{V}} \bigotimes_{\equiv} \bigotimes_{\equiv}^{V_s} \bigotimes_{2.2 \, k\Omega} \frac{1}{\prod_{\equiv}^{X_C} \check{S}_{k\Omega}} \bigotimes_{10 \, k\Omega}^{X_L}
$$

Thank You