

Circuit Analysis-II

Circuit Analysis-II

lecture # 8

Impedance & Admittance

Circuit Analysis-II

lecture # 8

Impedance of Parallel RC Circuits

 A basic parallel RC circuit connected to an AC voltage source is shown below:

✓ Since there are only two components, R and C, the total impedance can be found from the product-over-sum rule:

$$Z = \frac{\left(R \angle 0^\circ\right) \left(X_C \angle -90^\circ\right)}{R - jX_C}$$

$$Z = \frac{\left(RX_{C}\right)\angle\left(0^{\circ} - 90^{\circ}\right)}{\sqrt{R^{2} + X_{C}^{2}}\angle - \tan^{-1}\left(\frac{X_{C}}{R}\right)}$$

Circuit Analysis-II

lecture # 8

Impedance of Parallel RC <u>Circuits (cont.)</u>

 By dividing the magnitude expression in the numerator by that in the denominator and by subtracting the angle in the denominator from that in the numerator, you get:

$$Z = \left(\frac{RX_C}{\sqrt{R^2 + X_C^2}}\right) \angle \left(-90^\circ + \tan^{-1}\left(\frac{X_C}{R}\right)\right)$$

 \checkmark Equivalently, this expression can be written as:

$$Z = \left(\frac{RX_C}{\sqrt{R^2 + X_C^2}}\right) \angle \left(-\tan^{-1}\left(\frac{X_C}{R}\right)\right)$$

Circuit Analysis-II

lecture # 8

Admittance of Parallel RC Circuits

 Conductance, G, is the reciprocal of resistance. The phasor expression is expressed as:

$$\overline{G} = \frac{1}{R \angle 0^\circ} = G \angle 0^\circ$$

✓ Capacitive susceptance (B_c) is the reciprocal of capacitive reactance. The phasor expression for capacitive susceptance is: $\overline{R} = \frac{1}{R} = \frac{R}{Q0^\circ} = \frac{iR}{R}$

$$\overline{B}_C = \frac{1}{X_C \angle -90^\circ} = B_C \angle 90^\circ = +jB_C$$

 \checkmark Admittance (**Y**) is the reciprocal of impedance:

$$\overline{Y} = \frac{1}{Z \angle \pm \theta} = Y \angle \mp \theta$$

Circuit Analysis-II

lecture # 8

Monday 21* May. 18

Admittance of Parallel RC Circuits (cont.)

- ✓ The unit of each of these terns is the siemens (S), which is the reciprocal of the ohm.
- ✓ In working with parallel circuits, it is often easier to use conductance (G), capacitive susceptance (B_c) and admittance (B) rather than resistance (R), capacitive reactance (X_c) and impedance (Z).
- ✓ In a parallel RC circuit the total admittance is simply the phasor sum of the conductance and capacitive susceptance:

$$\overline{Y} = G + jB_C$$

Circuit Analysis-II

Example #1

 Determine the total admittance (Y) and then convert it to total impedance (Z) in figure shown below. Draw the admittance phasor diagram:

Circuit Analysis-II

lecture # 8

Impedance of Parallel RL Circuits

✓ A basic parallel RL circuit connected to an AC voltage source is shown below:

✓ The expression for the total impedance of a two-component parallel RL circuit is as follows:

$$\overline{Z} = \left(\frac{RX_L}{\sqrt{R^2 + X_L^2}}\right) \angle \tan^{-1}\left(\frac{R}{X_L}\right)$$

Circuit Analysis-II

lecture # 8

Admittance of Parallel RL Circuits

✓ For parallel RL circuits, the phasor expression for inductive susceptance (\mathbf{B}_L) is:

$$\overline{B}_{L} = \frac{1}{X_{L} \angle 90^{\circ}} = B_{L} \angle -90^{\circ} = -jB_{L}$$

 \checkmark The phasor expression for admittance is:

$$\overline{Y} = \frac{1}{Z \angle \pm \theta} = Y \angle \mp \theta$$

The total impedance is the phasor sum of the conductance and the inductive susceptance:

$$\overline{Y} = G - jB_L$$

Circuit Analysis-II

lecture # 8

Monday 21* May. 18

Admittance of Parallel RL <u>Circuits (cont.)</u>

Circuit Analysis-II

lecture # 8

RLC Series & Parallel Circuits

Circuit Analysis-II

lecture # 8

Impedance of Series RLC Circuits

✓ A series RLC circuit is shown below:

- ✓ Inductance reactance (X_L) causes the total current to lag the applied voltage.
- ✓ Capacitive reactance (X_C) has the opposite effect: it causes the current to lead the voltage.
- ✓ Thus X_L and X_C tend to offset each other, when they are equal they cancel and the total reactance is zero. $X_{tot} = |X_L X_C|$.

Circuit Analysis-II

Impedance of Series RLC Circuits (cont.)

- ✓ When $X_L > X_C$ the circuit is predominantly inductive, and when $X_C > X_L$ the circuit is predominantly capacitive.
- ✓ The total impedance for the series RLC circuit is stated in rectangular and polar form as follows:

$$\overline{Z} = R + jX_{L} - jX_{C}$$
$$\overline{Z} = \sqrt{R^{2} + (X_{L} - X_{C})^{2}} \angle \pm \tan^{-1}\left(\frac{X_{tot}}{R}\right)$$

Circuit Analysis-II

Example #2

✓ For the series RLC circuit in the figure below, determine the total impedance. Express it in both rectangular and polar forms:

Circuit Analysis-II

Impedance of Parallel RLC Circuits

 \checkmark The parallel RLC circuit is shown below:

✓ The total impedance for RLC circuit is as below:

$$\frac{1}{\overline{Z}} = \frac{1}{R \angle 0^{\circ}} + \frac{1}{X_{L}} \angle 90^{\circ} + \frac{1}{X_{C}} \angle -90^{\circ}$$
$$\overline{Z} = \frac{1}{\frac{1}{R \angle 0^{\circ}} + \frac{1}{X_{L}} \angle 90^{\circ}} + \frac{1}{X_{C}} \angle -90^{\circ}}$$

Circuit Analysis-II

lecture # 8

Monday 21* May. 18

Admittance of Parallel RLC Circuits

✓ The formulas of conductance (G), capacitive susceptance (B_C), inductive susceptance (B_L) and admittance (Y) are as follows:

$$\overline{G} = \frac{1}{R \angle 0^{\circ}} = G \angle 0^{\circ}$$

$$\overline{B}_{C} = \frac{1}{X_{C} \angle -90^{\circ}} = B_{C} < 90^{\circ} = jB_{C}$$

$$\overline{B}_{L} = \frac{1}{X_{L} \angle 90^{\circ}} = B_{L} < -90^{\circ} = -jB_{L}$$

$$\overline{F} = \frac{1}{Z \angle \pm \theta} = \overline{F} \angle \mp \theta = G + jB_{C} - jB_{L}$$

 \checkmark Unit of each of these quantities is the siemens (S).

Circuit Analysis-II

lecture # 8

Monday 21* May. 18

L

Example #3

✓ For the RLC circuit in figure below, determine the conductance, capacitive susceptance, inductive susceptance and total admittance. Also, determine the impedance.

Circuit Analysis-II

Analysis of Parallel Circuits

Circuit Analysis-II

lecture # 8

Parallel RC Circuits

- ✓ In the analysis of parallel circuits, the Ohm's law formulas using impedance can be rewritten for admittance using the relation Y= 1/Z.
- \checkmark The formulas are:

$$\overline{V} = \frac{\overline{I}}{\overline{Y}}$$
$$\overline{I} = \overline{VY}$$
$$\overline{Y} = \frac{\overline{I}}{\overline{V}}$$

Circuit Analysis-II

lecture # 8

Phase Relationships of Current & Voltages

✓ The currents in a basic parallel RC circuit is shown below:

The total current I_{tot}, divides at the junction into the two branch currents I_R and I_C.

✓ The applied voltage V_s, appears across both the resistive and the capacitive branches, so V_s, V_R and V_C are all in phase and of the same magnitude.

Circuit Analysis-II

lecture # 8

Monday 21* May. 18

Phase Relationships of Current & Voltages (cont.)

- \checkmark The current through the resistor is in phase with the voltage.
- The current through the capacitor leads the voltage and thus the resistive current by 90°.
- ✓ By Kirchhoff's current law, the total current is the phasor sum of the two branch currents.
- \checkmark The total current is expressed as:

$$\overline{I}_{tot} = \overline{I}_{R} + j\overline{I}_{C}$$
$$\overline{I}_{tot} = \sqrt{I_{R}^{2} + I_{C}^{2}} \angle \tan^{-1} \left(\frac{I_{C}}{I_{R}}\right)$$

Circuit Analysis-II

lecture # 8

Phase Relationships of Current & Voltages (cont.)

✓ Below is the complete current and voltage phasor diagram:

Circuit Analysis-II

lecture # 8

Conversion From Parallel to Series

- ✓ For every parallel RC circuit there is an equivalent series RC circuit for a given frequency.
- Two circuits are considered equivalent when they both present an equal impedance at their terminals, i.e., the magnitude of impedance and the phase angle are identical.
- To obtain the equivalent series circuit for a given parallel RC circuit, first find the impedance and phase angle of the parallel circuit.
- ✓ Then use the values of Z and θ to construct the impedance triangle.

Circuit Analysis-II

lecture # 8

0 Example #4 \checkmark Convert the parallel circuit shown below to a series form: X_C 27 k Ω R Vs $18 k\Omega$

Circuit Analysis-II

lecture # 8

Monday 21* May. 18

Parallel RL Circuits

✓ <u>Phase Relationships of Currents & Voltages</u>:
 ✓ The basic parallel RL circuit is shown below:

✓ The current through the resistor is in phase with the voltage.
 ✓ The current through the inductor lags the voltage and the resistor current by 90°.

Circuit Analysis-II

lecture # 8

Monday 21* May, 18

Parallel RL Circuits (cont.)

 The total current is the phasor sum of the two branches. The total current is expressed as:

$$\overline{I}_{tot} = \overline{I}_{R} - j\overline{I}_{L}$$
$$\overline{I}_{tot} = \sqrt{I_{R}^{2} + I_{L}^{2}} \angle - \tan^{-1} \left(\frac{I_{L}}{I_{R}}\right)$$

The phasor diagram for the current and voltage are shown below:

Circuit Analysis-II

lecture # 8

Monday 21* May. 18

Example #5

 Determine the value of each current in figure below and describe the phase relationship of each with the applied voltage. Draw the current phasor diagram.

Circuit Analysis-II

lecture # 8

Analysis of RLC Circuits

Circuit Analy/i/-II

lecture # 8

Series RLC Circuits

✓ The total reactance in RLC circuit behaves as follows:

- ✓ Starting at very low frequency, X_C is high and X_L is low and the circuit is predominantly capacitive.
- ✓ As the frequency increased, X_C decreases and X_L increases until a value is reached where X_C=X_L and the two reactance cancel making the circuit purely resistive.
- \checkmark This condition is series resonance.
- ✓ As the frequency is increased further X_L becomes greater than X_C and the circuit is predominantly inductive.

Series RLC Circuits (cont.)

 \checkmark As shown below:

- ✓ In series RLC circuit the capacitor voltage and the inductor voltage are always 180° out of phase with each other.
- ✓ For this reason V_C and V_L subtract from each other and thus the voltage across L and C combined is always less than the larger individual voltage across either element.

Circuit Analysis-II

lecture # 8

Monday 21* May. 18

Circuit Analy*r*ir-II

Parallel RLC Circuits

- As we know the capacitive reactance varies inversely with frequency and that inductive reactance varies directly with frequency.
- ✓ In a parallel RLC circuit at low frequencies the inductive reactance is less than the capacitive reactance, therefore the circuit is inductive.
- ✓ As the frequency is increased X_L increases and X_C decreased until a value is reached where X_L=X_C. This is the point of parallel resonance.
- ✓ As the frequency is increased further, X_C becomes smaller than X_L and the circuit becomes capacitive.

Parallel RLC Circuits (cont.)

- The current in the capacitive branch and the current in the inductive branch are always 180° out of phase with each other.
- \checkmark The total current is actually the difference in their magnitudes.
- ✓ Thus the total current into the parallel branches of L and C is always less than the largest individual branch current.
- ✓ The current in the resistive branch is always 90° out of phase with both reactive currents.

Circuit Analysis-II

lecture # 8

Parallel RLC Circuits (cont.)

 \checkmark The total current can be expressed as:

$$\overline{I}_{tot} = \sqrt{I_R^2 + (I_C - I_L)^2} \angle \tan^{-1}\left(\frac{I_{CL}}{I_R}\right)$$

✓ Where I_{CL} is I_C - I_L the total current into the L and C branches.

Circuit Analysis-II

Example #7

✓ For the circuit shown below, find each branch current and the total current. Draw a diagram of their relationship.

$$\begin{array}{c} \mathbf{V}_{s} \\ 5 \neq 0^{\circ} \mathbf{V} \end{array} \xrightarrow{\mathbf{V}_{s}} R \\ = & \begin{array}{c} \mathbf{Z}_{2.2} \mathbf{k} \Omega \end{array} \xrightarrow{\mathbf{V}_{c}} S \mathbf{k} \Omega \end{array} \xrightarrow{\mathbf{Z}_{c}} S \mathbf{k} \Omega \\ = & \begin{array}{c} \mathbf{Z}_{2.2} \mathbf{k} \Omega \end{array} \xrightarrow{\mathbf{Z}_{c}} S \mathbf{k} \Omega \end{array} \xrightarrow{\mathbf{Z}_{c}} S \mathbf{k} \Omega \xrightarrow{\mathbf{Z}_{c}} S \mathbf{k} \Omega \end{array}$$

Circuit Analysis-II

lecture # 8

Thank You

Circuit Analy/i/-II

lecture # 8