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Discrete	Time	Fourier	
Transform	



Development	of	the	DTFT		

v  In	 deriving	 discrete-time	 Fourier	 Transform	 we	 have	 three	 key	
steps:	

v  Step#1:		
v  Consider	 an	 aperiodic	 discrete-time	 signal	 x[n].	We	 pad	 x[n]	 to	 construct	 a	

periodic	signal	x’[n].	

v  Step#2:		
v  Since	x’[n]	is	periodic,	by	discrete-time	Fourier	series	we	have:	

ʹx [n]= ake
jk (2π /N )n

k= N
∑



Development	of	the	DTFT	(cont.)		

v  Where	ak	is:	

v  Here,	ω0=2π/N.	

v  Now	note	that	x’[n]	is	a	periodic	signal	with	period	N	and	the	non-
zero	 entries	 of	 x’[n]	 in	 a	 period	 are	 the	 same	 as	 the	 non-zero	
entries	of	x[n].	

v  Therefore,	it	holds	that:	

ak =
1
N

ʹx [n]e− jk (2π /N )n
n= N
∑

ak =
1
N

ʹx [n]e− jk (2π /N )n
n= N
∑

=
1
N

x[n]e− jk (2π /N )n
n=−∞

∞

∑



Development	of	the	DTFT	(cont.)		

v  If	we	define:	

v  Then:	

v  Step#3:	
v  Putting	above	equation	in	discrete-time	Fourier	series	equation,	we	have:	

X e jω( ) = x[n]e− jωn
n=−∞

∞

∑

ak =
1
N

x[n]e− jk (2π /N )n
n=−∞

∞

∑ =
1
N
X e jkω0( )

ʹx [n]= ake
jkω0n

k= N
∑

=
1
N
X e jkω0( )⎡

⎣⎢
⎤

⎦⎥
e jkω0n

k= N
∑

=
1
2π

X e jkω0( )e jkω0nω0
k= N
∑ , ω0 =

2π
N



Development	of	the	DTFT	(cont.)		

v  As	Nè∞,ω0	è0,	 so	 the	 area	 becomes	 infinitesimal	 small	 and	 sum	
becomes	integration	and		x’[n]=x[n],so	above	equation	becomes,	

v  Hence,	the	Discrete	time	Fourier	transform	pair:	

ʹx [n]= 1
2π

X e jkω0( )e jkω0nω0
k= N
∑ →

1
2π

X e jω( )e jωn dω
2π
∫

x n[ ] = 1
2π

X e jω( )e jωn dω
2π
∫

x[n]= 1
2π

X(e jω )e jωn dω
2π
∫

X e jω( ) = x[n]e− jωn
n=−∞

∞

∑



Development	of	the	DTFT	(cont.)		

v  The	first	equation	 is	referred	to	as	synthesis	equation	and	second	
one	as	analysis	equation.		

v  X(ejω)	is	referred	to	as	the	spectrum	of	x[n].	



Example	#1	

v  Consider	the	signal:	

v  Solution:	

	

x n[ ] = anu n[ ], a <1

X e jω( ) = x[n]e− jωn
n=−∞

∞

∑ = anu[n]e− jωn
n=−∞

∞

∑

= ae− jω( )
n

n=0

∞

∑ =
1

1− ae− jω



Example	#2	

v  Consider	the	signal:	

v  Solution:	

v  Let	m=-n	in	the	first	summation	we	obtain,	

	

x n[ ] = a n , a <1

X e jω( ) = a nu[n]e− jωn
n=−∞

∞

∑ = a−ne− jωn
n=−∞

−1

∑ + ane− jωn
n=0

∞

∑

X e jω( ) = a nu[n]e− jωn
n=−∞

∞

∑ = ane− jωn
n=0

∞

∑ + ame jωm
m=1

∞

∑

= ae− jω( )
n

n=0

∞

∑ + ae jω( )
m

m=1

∞

∑



Example	#2	(cont.)	

v  Both	of	these	summations	are	infinite	geometric	series	that	we	can	
evaluate	in	closed	form,	yielding:	

X e jω( ) =
1

1− ae− jω
+

ae jω

1− ae jω

=
1− a2

1− 2acosω + a2



The	Fourier	Transform	for	
Periodic	Signals	



Periodic	Signals	

v  For	a	periodic	discrete-time	signal:	

v  The	 discrete-time	 Fourier	 transform	 must	 be	 periodic	 in	 ω	 with	
period	2π.		

v  Then	the	Fourier	transform	of	x[n]	should	have	impulses	at	ω0	,	ω0	
±2π,	ω0	±4π,	and	so	on.		

v  In	fact,	the	Fourier	transform	of	x[n]	is	the	impulse	train:			

v  Now	consider	a	periodic	sequence	x[n]	with	period	N	and	with	the	
Fourier	series	representation:	

x[n]= e jω0n

X e jω( ) = 2πδ(ω −ω0 − 2π l)
l=−∞

∞

∑



Periodic	Signals	(cont.)	

v  In	this	case,	the	Fourier	transform	is:	

v  So	 that	 the	 Fourier	 transform	 of	 a	 periodic	 signal	 can	 directly	
constructed	from	its	Fourier	coefficients.	

	

x[n]= ake
jk (2π /N )n

k= N
∑

X e jω( ) = 2πakδ ω −
2πk
N

⎛

⎝
⎜

⎞

⎠
⎟

k=−∞

∞

∑



Example	#3	

v  Consider	the	periodic	signal:	

v  Solution:	
v  From	the	equation	of	periodicity	we	can	write:	

v  That	is,	

v  X(ejω)	repeats	periodically	with	a	period	of	2π,	as	shown	below:	

x[n]= cosω0n =
1
2
e jω0n + 1

2
e− jω0n, where ω0 =

2π
5

X e jω( ) = πδ(ω − 2π
5
− 2π l)

l=−∞

∞

∑ + πδ(ω + 2π
5
− 2π l)

l=−∞

∞

∑

X e jω( ) = πδ ω −
2π
5

⎛

⎝
⎜

⎞

⎠
⎟+πδ ω +

2π
5

⎛

⎝
⎜

⎞

⎠
⎟, −π ≤ω < π



Example	#3	(cont.)	



Properties	of	DT	Fourier	
Transform	



Periodicity	

v  The	 discrete-time	 Fourier	 transform	 is	 always	 periodic	 in	ω	with	
period	2π,	i.e.,	

X e j ω+2π( )( ) = X e jω( )



Linearity		

v  If:	

v  Then:	

x1 n[ ]↔ X1 e
jω( )

And

x2 n[ ]↔ X2 e
jω( )

ax1[n]+ bx2[n]↔
F
aX1 e

jω( )+ bX2 e jω( )



Time	Shifting	&	Frequency	Shifting	

v  If:	

v  Then:	

x n[ ]↔ X e jω( )

x n− n0[ ]↔
F
e− jω0nX e jω( )

and

e jω0nx[n]↔
F
X e j (ω−ω0 )( )



Conjugation	&	Conjugate	Symmetry	

v  If:	

v  Then:	

	

v  If	x[n]	is	real	valued,	its	transform	X(ejω)	is	conjugate	symmetric.	That	is:	

v  From	 this,	 it	 follows	 that	 	 	 	 	 	 is	 an	 even	 function	 of	 ω	 and																																						
																						is		an	odd	function	of	ω.	

v  Similarly	the	magnitude	of		X(ejω)	is	an	even	function	and	the	phase	angle	
is	an	odd	function.	

x n[ ]↔ X e jω( )

x∗ n[ ]↔
F
X∗ e− jω( )

X e jω( ) = X∗ e− jω( )
Re X e jω( ){ }

Im X e jω( ){ }



Conjugation	&	Conjugate	Symmetry	
(cont.)	

v  Furthermore,		

	 Ev x[n]{ }↔
F
Re X e jω( ){ }

and

Od x[n]{ }↔
F
j Im X e jω( ){ }



Differencing	&	Accumulation	

v  If:	

v  Then:	

v  Its	Fourier	transform	is	given	as:	

x n[ ]↔ X e jω( )

x[n]− x[n−1]
F

↔ 1− e− jω( )X e jω( )
For signal,

y[n]= x[m]
m=−∞

n

∑ ,

x[m]
m=−∞

n

∑
F

↔
1

1− e− jω( )
X(e jω )+πX(e j0 ) δ(ω − 2πk)

m=−∞

+∞

∑



Time	Reversal	

v  If:		

v  Then:	

x n[ ]↔ X e jω( )

x[−n]
F

↔X −e jω( )



Differentiation	in	Frequency	

v  If:	

v  Then:	

x n⎡⎣ ⎤⎦↔ X e jω( )

nx n[ ]
F

↔j dX(e
jω )

dω



Parseval’s	Relation	

v  If:	

v  Then:	

x n[ ]↔ X e jω( )

x[n] 2
n=−∞

+∞

∑ =
1
2π

X e jω( )
2
dω

2π
∫



Convolution	Property	

v  If	 x[n],	 h[n]	 and	 y[n]	 are	 the	 input,	 impulse	 response,	 and	output	
respectively,	of	an	LTI	system,	so	that,	

v  Where	X(ejω),	H(ejω)	and	Y(ejω)	are	 the	Fourier	 transforms	of	 x[n],	
h[n]	and	y[n]	respectively.	

y[n]= x n[ ]∗h n[ ]
then,

Y e jω( ) = X e jω( )H ejω( )



Example	#4	

v  Consider	an	LTI	system	with	impulse	response:	

v  The	frequency	response	is:	

v  Thus	 for	 any	 input	 x[n]	with	 Fourier	 transform	X(ejω),	 the	 Fourier	
transform	of	the	output	is:	

h n[ ] = δ n− n0[ ]

H ejω( ) = δ n− n0[ ]e− jωn
n=−∞

∞

∑ = e− jωn0

Y e jω( ) = e− jωn0X e jω( )



Multiplication	Property	

v  It	states	that:	

y n[ ] = x1 n[ ] x2 n[ ]
F

↔Y e jω( ) = 1
2π

X1
2π
∫ e jω( )X2 e j (ω−θ )( )dθ



Example	#5	

v  Consider	the	signal:	

v  Solution:		

x n[ ] = δ n[ ]+δ n−1[ ]+δ n+1[ ]

X e jω( ) = x n[ ]e− jωn
n=−∞

∞

∑

= δ n[ ]+δ n−1[ ]+δ n+1[ ]( )e− jωn
n=−∞

∞

∑

= δ n[ ]e− jωn
n=−∞

∞

∑ + δ n−1[ ]e− jωn
n=−∞

∞

∑ + δ n+1[ ]e− jωn
n=−∞

∞

∑

X e jω( ) =1+ e− jω + e jω =1+ 2cosω



Systems	Characterized	by	
Linear	Constant-Coefficient	

Difference	Equations	



Linear	Constant-Coefficient	Difference	
Equations	

v  A	general	linear	constant-coefficient	difference	equation	for	an	LTI	
system	with	input	x[n]	and	output	y[n]	is	of	the	form,	

v  Which	is	usually	referred	to	as	Nth-order	difference	equation.	

v  If	x[n]	=	ejωn	is	the	input	to	an	LTI	system,	then	the	output	must	be	
of	 the	 form	H(ejω)ejωn.	Substituting	 these	 expressions	 into	 above	
equation	and	performing	some	algebra	allow	us	to	solve	for	H(ejω).		

v  Based	on	convolution,	above	equation	can	be	written	as:	

aky n− k[ ]
k=0

N

∑ = bkx n− k[ ]
k=0

M

∑

H ejω( ) =
Y e jω( )
X e jω( )



Linear	Constant-Coefficient	Difference	
Equations	(cont.)	

v  Applying	 the	 Fourier	 transform	 to	 both	 sides	 and	 using	 the	
linearity	 and	 time-shifting	 properties	 we	 obtain	 the	 following	
expression:	

v  Or	equivalently	

v  The	frequency	response	of	the	LTI	system	can	be	written	down	by	
inspection	as	well.	

ake
− jkωY e jω( )

k=0

N

∑ = bke
− jkωX e jω( )

k=0

M

∑

H ejω( ) =
Y e jω( )
X e jω( )

=
bke

− jkω

k=0

M

∑

ake
− jkω

k=0

N

∑



Example	#6	

v  Consider	 the	 causal	 LTI	 system	 that	 is	 characterized	 by	 the	
difference	equation:	

v  The	frequency	response	of	this	system	is:	

v  The	impulse	response	is	given	by:	

y n[ ]− ay n−1[ ] = x n[ ], a <1

H ejω( ) =
Y e jω( )
X e jω( )

=
1

1− ae− jω

h n[ ] = anu n[ ]



Example	#7	

v  Consider	the	LTI	system:	

v  And	let	the	input	to	this	system	be:	

v  Solution:		

y n[ ]− 3
4
y n−1[ ]+ 1

8
y n− 2[ ] = 2x n[ ]

x n[ ] = 1
4
⎛

⎝
⎜
⎞

⎠
⎟
n

u n[ ]

Y e jω( ) = H ejω( )X e jω( ) = 2

1− 1
2
e− jω

⎛

⎝
⎜

⎞

⎠
⎟ 1−

1
4
e− jω

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1

1− 1
4
e− jω

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
2

1− 1
2
e− jω

⎛

⎝
⎜

⎞

⎠
⎟ 1−

1
4
e− jω

⎛

⎝
⎜

⎞

⎠
⎟
2



Example	#7	(cont.)	

v  Using	the	partial	fraction	expansion,	we	get:	

v  Solving	the	partial	fraction	gives:	

v  So	that:	

Y e jω( ) = B11
1− 1
4
e− jω

+
B12

1− 1
4
e− jω

⎛

⎝
⎜

⎞

⎠
⎟
2 +

B21
1− 1
2
e− jω

B11 = −4, B12 = −2, B21 = 8

Y e jω( ) = − 4

1− 1
4
e− jω

−
2

1− 1
4
e− jω

⎛

⎝
⎜

⎞

⎠
⎟
2 +

8

1− 1
2
e− jω



Example	#7	(cont.)	

v  The	inverse	transform	i.e.,	y[n]	is:	

y n[ ] = −4 1
4
⎛

⎝
⎜
⎞

⎠
⎟
n

− 2 n+1( ) 1
4
⎛

⎝
⎜
⎞

⎠
⎟
n

+8 1
2
⎛

⎝
⎜
⎞

⎠
⎟
n⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
u n[ ]



Problems	



Problem	#1	

v  Use	 the	 Fourier	 transform	 analysis	 equation	 to	 calculate	 the	
Fourier	transforms	of	the	following	signals:	

a( ) : 1
2
⎛

⎝
⎜
⎞

⎠
⎟
n−1

b( ) : δ n+ 2[ ]−δ n− 2[ ]

c( ) : sin π
2
n

⎛

⎝
⎜

⎞

⎠
⎟+ cos n( )



Problem	#2	

v  Consider	 a	 causal	 and	 stable	 LTI	 system	S	 whose	 input	 x[n]	 and	
output	 y[n]	 are	 related	 through	 the	 second-order	 difference	
equation:	

v  (a):	Determine	the	frequency	response	H(ejω)	for	the	system	S.	

v  (b):	Determine	the	impulse	response	h[n]	for	the	system	S.	

y n[ ]− 1
6
y n−1[ ]− 1

6
y n− 2[ ] = x n[ ]



Thank	You!	


