- 1. For a unit step function the value of the function should be:
 - a) 0 for t < 0 and 1 for $t \ge 0$
 - **b)** 0 for t < 0 and -1 for $t \ge 0$
 - c) 0 everywhere except for the 0 itself
 - d) None of the above

2. A system which is linear is said to obey the rules of:

- a) Scaling
- b) Additivity
- c) Both scaling and additivity
- d) None of the above

Answer: (c)

Answer: (a)

- 3. A time invariant system is a system whose output:
 - a) Increases with a delay in input
 - **b)** Remains same with a delay in input
 - c) Decreases with a delay in input
 - d) Vanishes with a delay in input

Answer: (b)

- 4. Signal is defined as:
 - a) A quantitative description of a physical phenomenon, event or the process.
 - **b)** A function represents a physical quantity or variable containing the information about the behavior and nature of the phenomenon.
 - c) A device or a set of rules defining the functional relation between the input and output.
 - d) Both (a) and (b)

Answer: (d)

- 5. In a time shift operation, if $t_0 > 0$ then:
 - a) The time shift is known as advance.
 - **b**) The time shift is known as delay.
 - c) The signal is decimated.
 - d) None of the above.

Answer: (b)

- 6. If 0 < a < 1, the time scale of the resultant signal is:
 - a) Decimated.
 - b) Speedup.
 - c) Slowed down.
 - d) None of the above.

Answer: (c)

7. For the signal shown below, if we shift it with $t_0 = -1$, then the result will be:

Answer: (a)

- 8. A system is said to be defined as non-causal, when:
 - a) The output at the present depends on the input at an earlier time.
 - b) The output at the present does not depend on the factor of time at all.
 - c) The output at the present depends on the input at a time instant in the future.
 - d) The output at the present depends on the input at the current time.

Answer: (c)

- 9. Is the function y[n] = x[n-1] x[n-4] memoryless? a) The system is memoryless. **b**) The system needs to have memory, so it is with memory. c) The system is neither memoryless nor with memory. d) None of the above. Answer: (b) 10. In real exponential function if $\alpha > 0$ then the graph will: a) Decrease exponentially. **b)** Grows exponentially. c) Increase exponentially. d) Both (b) and (c). Answer: (d) 11. A signal x (t) is said to be power signal if: a) $0 < P < \infty$ and $E = \infty$ **b**) 0 < P < E and E = 0c) $0 < P < \infty$ and E = 0d) None of the above Answer: (a) **12.** The unit impulse function is also known as: a) Dirac Delta function. b) Step function. c) Both (a) and (b). d) None of the above. Answer: (a) **13.** A signal cannot be both an energy signal and a power signal. a) False. b) True. c) May be. d) None of the above. Answer: (b)
- 14. The discrete-time unit impulse function δ [n] is defined as:
 - a) $\delta[n] = \begin{cases} 0 & for \ n = 0 \\ 1 & for \ n \neq 0 \end{cases}$ b) $\delta[n] = \begin{cases} 1 & for \ n = 0 \\ 0 & for \ n \neq 0 \end{cases}$ c) $\delta[n] = \begin{cases} 1 & for \ n = 0 \\ 0 & for \ n \neq 0 \\ 0 & for \ n < 0 \end{cases}$
 - d) None of the above.

Answer: (b)

15. The convolution of x (t) and h (t) is defined by:

- a) $y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)dt$
- b) $y(t) = \int_{-\infty}^{\infty} [x(\tau) + h(t-\tau)]d\tau$
- c) $y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$
- d) None of the above.

16. If the output is a scaled version of its input, then the input function is called as:

- a) Eigenvalue of the system.
- **b)** Eigenfunction of the system.
- c) Both (a) and (b).
- d) None of the above.

17. Memory in a discrete time system is analog if:

- a) Energy storage in a continuous time system.
- **b**) Memory in a continuous time system.
- c) Sampled memory of a continuous time LTI system.
- d) None of the above.

18. The system $y(t) = x(t) + \frac{1}{3}x(t-3)$ is:

- a) Non-causal system.
- b) Causal system.
- c) Partly A and partly B.
- d) None of the above.

Answer: (b)

Answer: (c)

Answer: (b)

Answer: (a)

19. Two sequences x₁ (n) and x₂ (n) are related by x₂ (n) = x₁ (-n). In the z-domain, their ROC's are:

- a) The same.
- b) Reciprocal of each other.
- c) Negative of each other.
- d) None of the above.

Answer: (b)

20.

_data have discrete states and take discrete values.

- a) Digital.
- b) Analog.
- **c)** (a) or (b).
- d) None of the above.

Answer: (a)

21. The Fourier transform (FT) of a function x [n] is $X(e^{j\omega})$. The FT of nx[n] will be:

a)
$$\frac{dx(t)}{dt}$$

b) $jfX(e^{j\omega})$.
c) $j\frac{dX(e^{j\omega})}{d\omega}$.

c)
$$j \frac{dx(e)}{d\omega}$$

d) None of the above.

Answer: (c)

- 22. Which mathematical notation specifies the condition of periodicity for a continuous time signal?
 - a) $x(t) = x(t + T_0)$
 - b) x(n) = x(n+N).
 - c) $x(t) = e^{-at}$.
 - d) None of the above.

Answer: (a)

- 23. The impulse response of a system is $h[n] = a^n u[n]$. The condition for the system to be BIBO stable is:
 - a) "a" is real and positive.
 - **b**) "a" is real and negative.
 - c) |a| > 1.
 - d) |a| < 1.

Answer: (d)

- 24. If R_1 is the region of convergence of x (n) and R_2 is the region of convergence of y (n), then the region of convergence of x(n) convoluted y(n) is:
 - a) $R_1 + R_2$.
 - **b**) $R_1 R_2$.
 - c) $R_1 \cap R_2$.
 - d) $R_1 \cup R_2$.

25. The continuous time system described by $y(t) = x(t^2)$ is:

- a) Causal, linear and time varying.
- b) Causal, non-linear and time varying.
- c) Non-causal, non-linear and time-invariant.
- d) Non-causal, linear and time-invariant.

Answer: (d)

Answer: (c)

26. $x[n] = a^{|n|}, |a| < 1$ is:

- a) An energy signal.
- **b**) A power signal.
- c) Neither energy nor a power signal.
- d) None of the above.

- **27.** A band pass signal extends from 1 KHz to 2 KHz. The minimum sampling frequency needed to retain all information in the sampled signal is:
 - a) 1 KHz.
 - **b)** 2 KHz.
 - c) 3 KHz.
 - d) None of the above.

Answer: (b)

28. The region of convergence of the z-transform of the signal $2^n u[n] - 3^n u[-n-1]$ is:

- a) |z| > 1.
- **b**) |z| < 1.
- c) 2 < |z| < 3.
- d) Does not exist.

Answer: (c)

29. The number of possible regions of convergence of the function $\frac{(e^{-2}-2)z}{(z-e^{-2})(z-2)}$ is:

- a) 1.
- **b)** 3.
- c) 2.
- d) None of the above.

Answer: (b)

30. Given a unit step function u (t), its time-derivative is:

- a) A unit impulse.
- **b)** Another step function.
- c) A unit ramp function.
- d) None of the above.

Answer: (a)

- **31.** The frequency response of a system with $h[n] = \delta[n] \delta[n-1]$ is given by:
 - a) $\delta(\omega) \delta(\omega 1)$.
 - **b**) $u(\omega) u(\omega 1)$.
 - c) $1 e^{-j\omega}$.
 - d) $1 e^{j\omega}$.

Answer: (b)

- 32. z-transform converts convolution of time-signals to:
 - a) Multiplication.
 - **b)** Addition.
 - c) Division.
 - d) None of the above.

Answer: (a)

33. The Fourier transform of u [n] is:

a)
$$\frac{1}{1-e^{-\omega}}$$
.
b) $\frac{1}{1-e^{-j\omega}}$.
c) $\frac{1}{j2\pi f}$.

d) None of the above.

Answer: (d)

- 34. The system having input x [n] related to output y [n] as $y[n] = log_{10}|x[n]|$ is:
 - a) Nonlinear, causal, not stable.
 - **b)** Nonlinear, non-causal, not stable.
 - c) Nonlinear, causal, stable.
 - d) None of the above.

Answer: (c)

35. To obtain x (4 - 2n) from the given signal x [n], the following procedure (or priority) rule is used for operations on the independent variable n:

- a) Time scaling \rightarrow Time shifting \rightarrow Reflection
- **b**) Time shifting \rightarrow Time scaling \rightarrow Reflection
- c) Reflection \rightarrow Time shifting \rightarrow Time scaling.
- d) None of the above.

Answer: (b)

36. The unit step-response of a system with impulse response $h[n] = \delta[n] - \delta[n-1]$ is:

- a) $\delta[n]$.
- **b**) $\delta[n-1]$.
- c) u[n].
- d) None of the above.

Answer: (a)

- **37.** The ROC of the z-transform of the signal $x[n] = \{2,1,1,2\}$; n(0) = 1 is:
 - a) All z, except z = 0.
 - **b**) All z, except $z = \infty$.
 - c) All z, except z = 0 and $z = \infty$.
 - d) None of the above.

Answer: (c)

- **38.** A continuous-time periodic signal x (t), having a period T, is convolved with itself. The resulting signal is:
 - a) Not periodic.
 - **b)** Periodic having a period T.
 - c) Periodic having a period 2T.
 - d) None of the above.

Answer: (b)

- **39.** If the Fourier series coefficients of a signal are periodic then the signal must be:
 - a) Continuous-time, periodic.
 - b) Continuous-time, non periodic.
 - c) Discrete-time, non periodic.
 - d) Discrete-time, periodic.

Answer: (d)

- 40. Let $H(e^{j\omega})$ be the frequency response of a discrete-time LTI system, and $H_1(e^{j\omega})$ be the frequency response of its inverse. Then:
 - a) $H(e^{j\omega})H_1(e^{j\omega}) = 1.$
 - b) $H(e^{j\omega})H_1(e^{j\omega}) = \delta(\omega).$
 - c) $H(e^{j\omega}) * H_1(e^{j\omega}) = \delta(\omega)$.
 - d) None of the above.

Answer: (a)

41. The transfer function of a stable system is $H(z) = \frac{1}{1 - 0.5z^{-1}} + \frac{1}{1 - 2z^{-1}}$. Its impulse

response will be:

- a) $(0.5)^n u[n] (2)^n u[n].$
- b) $-(0.5)^n u[n-1] + (2)^n u[n].$
- c) $(0.5)^n u[n] (2)^n u[-n-1].$
- d) None of the above.

Answer: (c)

42. The average power of the following signal is:

- **a**) $\frac{A^2}{2}$. **b**) A^2 .

c)
$$A^2T_1$$
.

d) None of the above.

Answer: (c)

- **43.** Convolution is used to find:
 - a) The impulse response of an LTI system.
 - **b**) Frequency response of a system.
 - c) The phase response of a LTI system.
 - d) The time response of a LTI system.

Answer: (d)

- 44. The Fourier transform of a rectangular pulse is:
 - a) Sinc function.
 - **b)** Another rectangular pulse.
 - c) Triangular pulse.
 - d) None of the above.

Answer: (a)

- **45.** The property of Fourier transform which states that the compression in time domain is equivalent to expansion in the frequency domain is:
 - a) Duality.
 - **b**) Frequency shifting.
 - c) Scaling.
 - d) None of the above.

Answer: (c)

- 46. Damped sinusoids are:
 - a) Sinusoidal signals multiplied by growing exponentials.
 - b) Sinusoidal signals divided by growing exponentials.
 - c) Sinusoidal signals multiplied by decaying exponentials.
 - d) Sinusoidal signals divided by decaying exponentials

Answer: (c)

47. The function which has its Fourier transform, Laplace transform and Z-transform unity is:

- a) Gaussian.
- b) Sinc.
- c) Pulse.
- d) Impulse.

Answer: (d)

48. The z-transform of $\delta[n-m]$ is:

- a) z^{-m} .
- b) Z^m .
- c) $\frac{1}{z}$.
- d) None of the above.

Answer: (a)

49. The area under the curve $\int_{-\infty}^{\infty} \delta(t) dt$ is:

- a) ∞.
- **b)** Unity.
- **c)** 0.
- d) None of the above.

50. For a stable system:

- a) |z| > 1.
- **b**) |z| = 1.
- c) |z| < 1.
- d) None of the above.

Answer: (c)