Properties of the Discrete Time Fourier Transform

Section	Property	Aperiodic Signal	Fourier Transform
		x[n]	$X(e^{j\omega})$ periodic with
		y[n]	$Y(e^{p\phi})$ period 2π
5.3.2	Linearity	ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$
5.3.3	Time Shifting	$x[n-n_0]$	$e^{-j\omega\eta_0}X(e^{i\omega})$
5.3.3	Frequency Shifting	$e^{j\omega_0 n} x[n]$	$X(e^{j(m-\phi_{\Pi})})$
5.3 4	Conjugation	x*[n]	$X^*(e^{-j\omega})$
5.3.6	Time Reversal	x[-n]	$X(e^{-jm})$
5.3.7	Time Expansion	$x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n = \text{multiple of } k \\ 0, & \text{if } n \neq \text{multiple of } k \end{cases}$	$X(e^{jk\omega})$
5.4	Convolution	x[n] * y[n]	$X(e^{i\omega})Y(e^{i\omega})$
5.5	Multiplication	x[n]y[n]	$\frac{1}{2\pi} \int_{\gamma_{\theta}} X(e^{j\theta}) Y(e^{i(\alpha-\theta)}) d\theta$
5.3.5	Differencing in Time	x[n] = x[n-1]	$(1 - e^{-/w})X(e^{/w})$
5.3.5	Accumu]ation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{(1-e^{-j\omega})X(e^{j\omega})}{1-e^{-j\omega}}X(e^{j\omega})$
5.3.8	Differentiation in Frequency	nx[n]	$+\pi X(e^{j\theta}) \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{jm})}{d\omega}$
5,3,4	Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \Re e\{X(e^{j\omega})\} = \Re e\{X(e^{-j\omega})\} \\ \Im e\{X(e^{j\omega})\} = -\Im e\{X(e^{-j\omega})\} \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \leqslant X(e^{j\omega}) = - \leqslant X(e^{-j\omega}) \end{cases}$
534	Symmetry for Real, Even Signals	x[n] real an even	$X(e^{i\omega})$ real and even
5.3.4	Symmetry for Real, Odd Signals	x[n] real and odd	X(e [™]) purely imaginary and odd
5.3.4	Even-odd Decomposition	$v_e[n] = \delta v\{x[n]\} - \{x[n] \text{ real}\}$	$\Re e\{X(e^{j\omega})\}$
	of Real Signals	$x_n(n) = 0d\{x[n]\} \{x[n] \text{ real}\}$	$j \mathcal{I}m\{X(e^{jw})\}$
5.3.9	Parseval's Relation for Aperiodic Signals		
	$\sum_{n=1}^{\infty} x[n] $	$^{2}=\frac{1}{2\pi}\int_{2\pi} X(e^{i\omega}) ^{2}d\omega$	

Basic Pairs of Discrete Time Fourier Transform

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=\sqrt{N}^n} a_k e^{-(k(2n)N)n}$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta\left(\omega + \frac{2\pi k}{N}\right)$	йk
€ ^{J∆Q™}	$2\pi \sum_{I=-\infty}^{\infty} \delta(\omega - \omega_0 - 2\pi I)$	(a) $\omega_0 = \frac{2\pi m}{h}$ $a_k = \begin{cases} 1, & k = m, m \pm N, m \pm 2N, \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ orgational \Rightarrow The signal is apenedic
നടക്കുമ	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_{ll} - 2\pi l) + \delta(\omega + \omega_{0} - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi m}{h}$ $a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ in artational \Rightarrow The signal is aperiodic
SID ₩ ₀ #	$\frac{\pi}{J} \sum_{l=-\infty}^{+\infty} \left\{ \delta(\omega + \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l) \right\}$	(a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2J}, & k = r, r \in N, r \pm 2N, \\ -\frac{1}{2J}, & k = -r, -r \pm N, -r \pm 2N, \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ invalional \Rightarrow The signal is apenedic
∀ n] = 1	$2\pi \sum_{l=-\infty}^{\infty} \delta(\omega - 2\pi t)$	$a_k = \begin{cases} 1 & k = 0, \pm N, \pm 2N, \\ 0, & \text{otherwise} \end{cases}$
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 \le n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-n}^{\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi k/N)(N_k + \frac{1}{2})]}{N \sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N,$ $a_k = \frac{2N_k + 1}{N}, \ k = 0, \pm N, \pm 2N,$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N}\sum_{k=-r}^{+r}\delta\left(\omega-\frac{2\pi k}{N}\right)$	$u_t = \frac{1}{N}$ for all k
$a^n u[n], a < 1$	1 1 - ae-Ju	-
$x[n] \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	_
$\frac{64W\pi}{\pi\pi} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{W\pi}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega)$ periodic with period 2π	_
δ[n]	1	i _

ω[π]	$\frac{1}{1-e^{-j\omega}}+\sum_{k=-\infty}^{+\infty}\pi\delta(\omega-2\pi k)$	
δ(n - n ₀)	€losa	
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-a\epsilon^{-J\omega})^2}$	
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a < 1$	$\frac{1}{(1-ae^{-j\omega})^r}$	