





Energy & Power

A signal with finite signal energy is called an energy
signal.

A signal with infinite signal energy and finite average
signal power is called a power signal.

The total energy of a continuous time signal x(t) ,
where x(t) is defined for , 1s

The time-average power of a signal is:



Energy & Power (cont.)

An energy signal is a signal with finite E_.. For an
energy signal, P, =o.

A power signal is a signal with finite, nonzero P.. For
a power signal, E_=co.

The total energy of a discrete-time signal is defined

by:

The time-average power is:



Neither Energy Nor Power Signals
(NENP)

I[f magnitude of signal is infinite at any instant of time
than the signal will be neither energy nor power
signal.

For example : x(t) = t u(t) is NENP signal.




Example #1

Calculate the total energy of the following continuous
time signal:

Calculate the average power of the following
continuous time signal:






Periodic v/s Aperiodic
A signal is said to be periodic if it repeats itself after a

regular interval of time.

Definition-1: A continuous time signal x(t) is periodic
if there is a constant T > o such that:

Definition-2: A discrete time signal x[n] is periodic if
there is an integer constant N > o such that:

Signals do not satisfy the periodicity conditions are
called aperiodic signals.



Periodic v/s Aperiodic (cont.)

T, is called the fundamental period of x(t) if it is the
smallest value of T >0 satistying the periodicity
condition. The number is called the
fundamental frequency of x(t).

N, is called the fundamental period of x[n] if it is
smallest value of N > o0 where N ¢ Z satisfying the
periodicity condition. The number is called the
fundamental frequency of x[n].









Even & Odd Signals

An even signal is any signal f such that x(t) = x(-t) or
x|n]=x[-n]

A signal x(t) or x[n] is referred to as an even signal if it
is identical to its time-reversed counterpart, i.e., with
its reflection about the origin.

An odd signal on the other hand is a signal f such that

x(t) = -(x(-t)) or x[n|=-(x[-n]).



x(7)=x,(7)+x,(7)

x(/‘) = %(x(;) 2 x(—f)) + %(x(f) — x(=2))




Even & Odd Signals (cont.)

The all-zero signal is both even and odd. Any other
signal cannot be both even and odd, but may be
neither.



x(/‘) = cos(/‘) + sin(/‘) + cos(f)sin(f)

I[ﬂ] = {-4-5/,1+2/,4}
|




Continuous-Time Complex Exponential

The continuous-time complex exponential signal is of
the form:

Depending upon the values of these parameters, the
complex exponential can exhibit several different
characteristics.



Real Exponential Signals

If C and a are real there are basically two types of
behavior.

If a is positive, then as t increase x(t) is a growing
exponential, i.e., when a>o.

If a is negative then x(t) is a decaying exponential, i.e.,
when a<o.
When a=o0 then x(t) is constant.




Periodic Complex Exponential

Let’s consider the case where a is purely imaginary,
i.e., a=jw, w, belongs to R.

Since C is a complex number, we have: where
A, 6 belongs to R.

Consequently:

The real and imaginary parts of x(t) are:



Periodic Complex Exponential (cont.)

We can think of x(t) as a pair of sinusoidal signals of
the same amplitude A, w, and phase shift 0 with one a
cosine and the other a sine.

2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
t t

(a) Re{Ce«ot} (b) Zm{Ceiwot}

Periodic complex exponential function x(t)= Ce/*°t, C=1, w =21



Periodic Complex Exponential (cont.)

is periodic with:
Fundamental period: T, = 2m/|w,,|

Fundamental frequency: |w,|

The second claim is the immediate result from the
first claim. To show the first claim, we need to show
that x(t+T,) = x(t) and no smaller T, can satisfy the
periodicity criteria.

It is easy to show that T is the smallest period.



General Complex Exponential

The most general case of a complex exponential can
be expressed and interpreted in terms of the two
cases: the real exponential and the periodic complex
exponential.

Consider a complex exponential Ce?t, where C is
expressed in polar form and a in rectangular form i.e.,

And:
Then:



General Complex Exponential (cont.)

Using Euler’s relation, we can expand this further as:

Thus for r=0, the real and imaginary parts of a
complex exponential are sinusoidal.

For r>o they correspond to sinusoidal signals
multiplied by a growing exponential.

For r < 0, they correspond to sinusoidal signals
multiplied by a decaying exponential.



General Complex Exponential (cont.)

As shown below: (a) is growing sinusoidal signal when
r>o, (b) is decaying sinusoid when r<o.

Sinusoidal signals multiplied by decaying
exponentials are commonly referred to as damped
signals.



Discrete Time Complex Exponential

A discrete-time complex exponential function has the
form:

Where C,  belongs to Complex. Letting a=eP :



Real-Valued Complex Exponential

x|n] is a real-valued complex exponential when C
belongs to R and o belongs to R.

In this case, x[n]=Ca" is a monotonic decreasing
function when o < a <1 and is a monotonic increasing
when o > 1.

The real exponential signal (a) o>1, (b) o< a <1, (¢) -1< @ <0, (d) < -1



B} —

Complex-Valued C

Comsequently,

x[n] —Col = C‘eﬂ9 (‘a‘ejg‘) )n

=|Cllet|" cos(Ryn+6)+ j|C|la| sin(L,n +0)




Complex-Valued Complex Exponential
(cont.)

Three cases can be considered here:
When |a|=1, then x[n] = |C|cos (2, n+6) +j |C|sin (2, n+0)
and it has sinusoidal real and imaginary parts (not
necessarily periodic though).
When |a| > 1, then |a|" is a growing exponential, so the real
and imaginary parts of x[n] are the product of this with
sinusoids.

When || <1, then the real and imaginary parts of x[n] are
sinusoids sealed by a decaying exponential.



Complex-Valued Complex Exponential
(cont.)

(a) Growing Discrete-time sinusoidal
signals (b) decaying discrete time sinusoid



Periodic Complex Exponential

Consider .We want to study the
condition for x[n] to be periodic.

The periodicity condition requires that, for some N>o,

Since , it holds that:

This is equivalent to:



Periodic Complex Exponential(cont.)

Therefore, the condition for periodicity of x[n] is:

For some m belongs to Z and some N>o, N belongs to Z.
Thus x[n] = e/’ is periodic if and only if Q_ is a
rational multiple of 2m.

The fundamental period is:
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Impulse & Unit Step
Functions




Unit Impulse Function

It is also known as Dirac delta function.




ey 1 T .




Properties of Impulse Function

Sampling Property for §[n]:
By the definition 8[n], §[n-n_] =1if n=n_ and o
otherwise.
Therefore,

As a special case when n_=o0, we have x[n] [n] =

x|0]8[n].

When a signal x|n] is multiplied with §[n], the output is
a unit impulse with amplitude x|o].



Properties of Impulse Function (cont.)

Sampling Property for §[n]: (cont.)




x(6)0(r-1,)=x(t,)0(r-1,)
for any t,€ER










Properties of Impulse Function (cont.)
Even & Odd:

8[n] = 8[-n] hence, it is an even signal.

Also 8(t) = 8(-t), therefore it is also an even signal.
Power or Energy Signal:

d[n] is an energy signal as ‘0 < E {§[n]} <o0”.

t=0 =» magnitude = oo . Therefore it is NENP.



Unit Step Function

The unit step function for continuous time is defined
as:

The unit step function for discrete time is defined as:




Difference b/w Unit Impulse & Unit
Step Sequences

Discrete time unit impulse is the first difference of the
discrete time unit step. l.e.; 8[n]=u[n]-u[n-1]

Discrete time unit step is the running sum of the
discrete time unit impulse or unit sample. i.e;






