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�  A	signal	with	finite	signal	energy	is	called	an	energy	
signal.	

�  A	signal	with	infinite	signal	energy	and	finite	average	
signal	power	is	called	a	power	signal.	

�  The	total	energy	of	a	continuous	time	signal	x(t)	,	
where	x(t)	is	defined	for																	,	is	

	

�  The	time-average	power	of	a	signal	is:	
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�  An	energy	signal	is	a	signal	with	finite	E∞.	For	an	
energy	signal,	P∞	=0.	

�  A	power	signal	is	a	signal	with	finite,	nonzero		P∞.	For	
a	power	signal,	E∞=∞.	

�  The	 total	 energy	 of	 a	 discrete-time	 signal	 is	 defined	
by:	

	
�  The	time-average	power	is:	
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�  If	magnitude	of	signal	is	infinite	at	any	instant	of	time	
than	the	signal	will	be	neither	energy	nor	power	
signal.	

�  For	example	:	x(t)	=	t	u(t)	is	NENP	signal.	



�  Calculate	the	total	energy	of	the	following	continuous	
time	signal:	

�  Calculate	the	average	power	of	the	following	
continuous	time	signal:	

x t( ) = e −αtu t( ), α > 0

x t( ) = A0 sinω0t



�  Determine	whether	the	following	signals	are	energy	
signals	or	power	signals:	

�  (1):	

�  (2):	

x n⎡⎣ ⎤⎦= 1/ 3( )
n
u n⎡⎣ ⎤⎦

x n⎡⎣ ⎤⎦= A0u n⎡⎣ ⎤⎦



�  A	signal	is	said	to	be	periodic	if	it	repeats	itself	after	a	
regular	interval	of	time.	

�  Definition-1:	A	continuous	time	signal	x(t)	is	periodic	
if	there	is	a	constant	T	>	0	such	that:	

�  Definition-2:	A	discrete	time	signal	x[n]	is	periodic	if	
there	is	an	integer	constant	N	>	0	such	that:	

�  Signals	do	not	satisfy	the	periodicity	conditions	are	
called	aperiodic	signals.	

	

x t( ) = x t ± nT( ), for all t ∈ R

x n⎡⎣ ⎤⎦= x n ±mN⎡⎣ ⎤⎦, for all n ∈ Z



�  T0	is	called	the	fundamental	period	of	x(t)	if	it	is	the	
smallest	value	of	T	>0	satisfying	the	periodicity	
condition.	The	number																				is	called	the	
fundamental	frequency	of		x(t).		

�  N0	is	called	the	fundamental	period	of	x[n]	if	it	is	
smallest	value	of	N	>	0	where	N	ε	Z	satisfying	the	
periodicity	condition.	The	number 											is	called	the	
fundamental	frequency	of	x[n].		

ω0 =
2π
T0

Ω0

2π
=
m
N



�  Calculate	the	fundamental	time	period	of	the	
following	signals:	

�  (1):	

�  (2):	

x t( ) = A0e jω0t

x n⎡⎣ ⎤⎦= cos
3π
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�  Calculate	the	fundamental	time	period	of	the	
following	composite	signals:	

�  (1):	

�  (2):	

x t( ) = sin6π t + cos5π t
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�  An	even	signal	is	any	signal	f	such	that	x(t)	=	x(-t)	or	
x[n]=x[-n]	

�  A	signal	x(t)	or	x[n]	is	referred	to	as	an	even	signal	if	it	
is	identical	to	its	time-reversed	counterpart,	i.e.,	with	
its	reflection	about	the	origin.	

�  An	odd	signal	on	the	other	hand	is	a	signal	f	such	that	
x(t)	=	-(x(-t))	or	x[n]=-(x[-n]).	

	



�  Any	signal	can	be	written	as	a	combination	of	an	even	
and	 odd	 signal,	 i.e.,	 every	 signal	 has	 an	 odd-even	
decomposition.	

	

x n⎡⎣ ⎤⎦= xe n⎡⎣ ⎤⎦+ xo n⎡⎣ ⎤⎦

x n⎡⎣ ⎤⎦=
1
2
x n⎡⎣ ⎤⎦+ x −n⎡⎣ ⎤⎦( )+ 12 x n

⎡⎣ ⎤⎦− x −n⎡⎣ ⎤⎦( )

x t( ) = xe t( )+ xo t( )
x t( ) = 12 x (t )+ x (−t )( )+ 12 (x (t )− x (−t ))



�  The	 all-zero	 signal	 is	 both	 even	 and	 odd.	 Any	 other	
signal	 cannot	 be	 both	 even	 and	 odd,	 but	 may	 be	
neither.	



�  Find	the	even	and	odd	components	of	following	
signals:	

�  (1):	

�  (2):	

x t( ) = cos t( )+ sin t( )+ cos t( )sin t( )

x n⎡⎣ ⎤⎦= −4−5 j ,1+ 2 j
↑
,4{ }



�  The	continuous-time	complex	exponential	signal	is	of	
the	form:	

�  Depending	upon	the	values	of	these	parameters,	the	
complex	exponential	can	exhibit	several	different	
characteristics.	

x t( ) =Ceat, where C, a ∈C



�  If	C	and	a	are	real	there	are	basically	two	types	of	
behavior.	

�  If	a	is	positive,	then	as	t	increase	x(t)	is	a	growing	
exponential,	i.e.,	when	a>0.	

�  If	a	is	negative	then	x(t)	is	a	decaying	exponential,	i.e.,	
when	a<0.	

� When	a=0	then	x(t)	is	constant.	
	

a>0	 a<0	



�  Let’s	consider	the	case	where	a	is	purely	imaginary,	
i.e.,	a	=	jω0,	ω0	belongs	to	R.		

�  Since	C	is	a	complex	number,	we	have:		 							where	
A,	θ	belongs	to	R.	

�  Consequently:	

�  The	real	and	imaginary	parts	of	x(t)	are:		

C = Ae jθ

x t( ) =Ce jω0t = Ae jθe jω0t

= Ae j ω0t+θ( ) = Acos ω0t +θ( )+ jAsin ω0t +θ( )

Re x t( ){ }= Acos ω0t +θ( )
Im x t( ){ }= Asin ω0t +θ( )



� We	can	think	of	x(t)	as	a	pair	of	sinusoidal	signals	of	
the	same	amplitude	A,	ω0	and	phase	shift	θ	with	one	a	
cosine	and	the	other	a	sine.	

Periodic	complex	exponential	function	x(t)=	Cejω0t,	C=1,	ω0=2π	



�  																		is	periodic	with:	
�  Fundamental	period:	T0	=	2π/|ω0|	
�  Fundamental	frequency:		|ω0|	
�  The	second	claim	is	the	immediate	result	from	the	
first	claim.	To	show	the	first	claim,	we	need	to	show	
that	x(t+T0)	=	x(t)	and	no	smaller	T0	can	satisfy	the	
periodicity	criteria.	

�  It	is	easy	to	show	that	T0	is	the	smallest	period.	

x t( ) =Ce jω0t

x t +T0( ) =Ce
jω0 t+

2π
ω0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=Ce jω0te± j2π

=Ce jω0t = x(t)



�  The	most	general	case	of	a	complex	exponential	can	
be	expressed	and	interpreted	in	terms	of	the	two	
cases:	the	real	exponential	and	the	periodic	complex	
exponential.	

�  Consider	a	complex	exponential	Ceat,	where	C	is	
expressed	in	polar	form	and	a	in	rectangular	form	i.e.,	

		
�  And:	
�  Then:	

C = C e jθ

a = r + jω0

Ceat = C e jθe r+ jω0( )t = C erte j ω0t+θ( )



�  Using	Euler’s	relation,	we	can	expand	this	further	as:	

�  Thus	for	r=0,	the	real	and	imaginary	parts	of	a	
complex	exponential	are	sinusoidal.	

�  For	r>0	they	correspond	to	sinusoidal	signals	
multiplied	by	a	growing	exponential.	

�  For	r	<	0,	they	correspond	to	sinusoidal	signals	
multiplied	by	a	decaying	exponential.	

Ceat = C ert cos ω0t +θ( )+ j C ert sin ω0t +θ( )



�  As	shown	below:	(a)	is	growing	sinusoidal	signal	when	
r>0,	(b)	is	decaying	sinusoid	when	r<0.	

�  Sinusoidal	signals	multiplied	by	decaying	
exponentials	are	commonly	referred	to	as	damped	
signals.	



�  A	discrete-time	complex	exponential	function	has	the	
form:	

� Where	C,	β	belongs	to	Complex.	Letting	α=eβ	:	

x n[ ] =Ceβn

x n[ ] =Cα n



�  x[n]	is	a	real-valued	complex	exponential	when	C	
belongs	to	R	and	α	belongs	to	R.	

�  In	this	case,	x[n]=Cαn	is	a	monotonic	decreasing	
function	when	0	<	α	<1	and	is	a	monotonic	increasing	
when	α	>	1.	

The	real	exponential	signal	(a)	α>1,	(b)	0<	α	<1,	(c)	-1<	α	<0,	(d)	α	<	-1	



�  x[n]	is	a	complex-valued	complex	exponential	when	
C,α	belongs	to	complex.		

�  In	this	case	C	and	α	can	be	written	as:	

C = C e jθ and α = α e jΩ0

Comsequently,

x n[ ] =Cα n = C e jθ α e jΩ0( )
n

= C α
n e j Ω0n+θ( )

= C α
n cos Ω0n+θ( )+ j C α

n sin Ω0n+θ( )



�  Three	cases	can	be	considered	here:	
�  When	|α|=1,	then	x[n]	=	|C|cos	(Ω0n+θ)	+	j	|C|sin	(Ω0n+θ)	

and	it	has	sinusoidal	real	and	imaginary	parts	(not	
necessarily	periodic	though).	

�  When	|α|	>	1,	then	|α|n	is	a	growing	exponential,	so	the	real	
and	imaginary	parts	of	x[n]	are	the	product	of	this	with	
sinusoids.		

�  When	|α|	<	1,	then	the	real	and	imaginary	parts	of	x[n]	are	
sinusoids	sealed	by	a	decaying	exponential.		



(a)	Growing	Discrete-time	sinusoidal	
signals	(b)	decaying	discrete	time	sinusoid		



�  Consider 	 	 					.We	want	to	study	the	
condition	for	x[n]	to	be	periodic.		

�  The	periodicity	condition	requires	that,	for	some	N>0,		

�  Since 										,	it	holds	that:		

�  This	is	equivalent	to:	

x n⎡⎣ ⎤⎦=Ce
jΩ0n ,Ω0 ∈ R

x n+ N[ ] = x n[ ], ∀n ∈ Z
x n[ ] =Ce jΩ0n

e jΩ0 n+N( ) = e jΩ0ne jΩ0N = e jΩ0n, ∀n ∈ Z

e jΩ0N =1 or Ω0N = 2πm, for some m ∈ Z



�  Therefore,	the	condition	for	periodicity	of	x[n]	is:	

�  For	some	m	belongs	to	Z	and	some	N>0,	N	belongs	to	Z.	
�  Thus	x[n]	=	ejΩon	is	periodic	if	and	only	if	Ω0	is	a	
rational	multiple	of	2π.	

�  The	fundamental	period	is:	
	

Ω0 =
2πm
N

N =
2πm
Ω0





�  It	is	also	known	as	Dirac	delta	function.		

δ(t) =
1 for t = 0
0 for t ≠ 0

⎧
⎨
⎪

⎩⎪

δ(n) =
1 for n = 0
0 for n ≠ 0

⎧
⎨
⎪

⎩⎪



�  The	area	of	unit	impulse	function	is	always	equal	to	‘1’.	

δ t( )dt
−∞

∞

∫ =1



�  Sampling	Property	for	δ[n]:	
�  By	the	definition	δ[n],	δ[n-n0]	=	1	if	n=n0	and	0	
otherwise.	

�  	Therefore,	

�  As	a	special	case	when	n0=0,	we	have	x[n]	δ[n]	=	
x[0]δ[n].		

�  When	a	signal	x[n]	is	multiplied	with	δ[n],	the	output	is	
a	unit	impulse	with	amplitude	x[0].	

x n[ ]δ n− n0[ ] =
x n[ ], n = n0
0, n ≠ n0

⎧
⎨
⎪

⎩⎪

= x n0[ ]δ n− n0[ ]



�  Sampling	Property	for	δ[n]:	(cont.)	
	



�  Sampling	Property	of	δ(t):	

�  Note	that	x(t)	δ(t)	=	x(0)	when	t=0	and	x(t)	δ(t)	=0	
when	t≠0.	

�  Similarly	we	have:	

x t( )δ t( ) = x 0( )δ t( )

x t( )δ t − t0( ) = x t0( )δ t − t0( )
for any t0 ∈ R



�  Shifting	Property	of	δ[n]:	
�  Since	x[n]	δ[n]=	x[0]	δ[n]	and	 							,	we	have	

�  And	similarly:	

�  In	general,	the	following	result	holds:	

δ n[ ]
n=−∞

∞

∑ =1

x[n]δ n[ ]
n=−∞

∞

∑ = x 0[ ]δ n[ ]
n=−∞

∞

∑ = x 0[ ] δ n[ ]
n=−∞

∞

∑ = x 0[ ]

x[n]δ n− n0[ ]
n=−∞

∞

∑ = x[n0 ]δ n− n0[ ]
n=−∞

∞

∑ = x[n0 ]

x[n]δ n− n0[ ]
n=a

b

∑ =
x n0[ ], if n0 ∈ a,b[ ]

0, if n0 ∉ a,b[ ]

⎧

⎨
⎪

⎩
⎪



�  Shifting	Property	of	δ(t):	
v The	 shifting	 property	 follows	 from	 the	 sampling	
property.	

v Integrating	x(t)	δ(t)	yields:	

v Similarly,	one	can	show	that:	

x t( )δ t( )dt
−∞

∞

∫ = x 0( )δ t( )dt
−∞

∞

∫ = x 0( ) δ t( )dt
−∞

∞

∫ = x 0( )

x t( )δ t − t0( )dt
−∞

∞

∫ = x t0( )



�  Even	&	Odd:	
�  δ[n]	=	δ[-n]	hence,	it	is	an	even	signal.	
�  Also	δ(t)	=	δ(-t),	therefore	it	is	also	an	even	signal.		

�  Power	or	Energy	Signal:	
�  δ[n]	is	an	energy	signal	as	‘0	<	E	{δ[n]}	<∞”.	
�  t=0	è	magnitude	=	∞	.	Therefore	it	is	NENP.	



�  The	unit	step	function	for	continuous	time	is	defined	
as:	

�  The	unit	step	function	for	discrete	time	is	defined	as:	

u(t) =
1 for t ≥ 0
0 for t < 0

⎧
⎨
⎪

⎩⎪

u(n) =
1 for n ≥ 0
0 for n < 0

"
#
$

%$



�  Discrete	time	unit	impulse	is	the	first	difference	of	the	
discrete	time	unit	step.	I.e.;	δ[n]=u[n]-u[n-1]	

�  Discrete	time	unit	step	is	the	running	sum	of	the	
discrete	time	unit	impulse	or	unit	sample.	i.e.;		

u[n]= δ[m]
m=−∞

n

∑




