Signal & Systems

Lecture # 2

Classification of Signals

Energy & Power

- A signal with finite signal energy is called an energy signal.
- A signal with infinite signal energy and finite average signal power is called a power signal.
- The total energy of a continuous time signal x(t), where x(t) is defined for $-\infty < t < \infty$, is

$$E_{\infty} = \int_{-\infty}^{\infty} x^2(t) dt = \lim_{T \to \infty} \int_{-T}^{T} x^2(t) dt$$

• The time-average power of a signal is:

$$P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x^2(t) dt$$

Energy & Power (cont.)

- An energy signal is a signal with finite E_{∞} . For an energy signal, P_{∞} =0.
- A power signal is a signal with finite, nonzero P_{∞} . For a power signal, $E_{\infty} = \infty$.
- The total energy of a discrete-time signal is defined by:

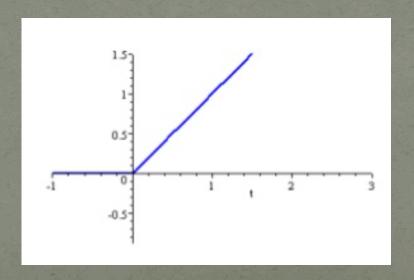
$$E_{\infty} = \sum_{n=-\infty}^{\infty} x^{2} [n] = \lim_{N \to \infty} \sum_{n=-N}^{N} x^{2} [n]$$

The time-average power is:

$$P_{\infty} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x^{2} [n]$$

Neither Energy Nor Power Signals (NENP)

- If magnitude of signal is infinite at any instant of time than the signal will be neither energy nor power signal.
- For example : x(t) = t u(t) is NENP signal.



Example #1

 Calculate the total energy of the following continuous time signal:

$$x(t) = e^{-\alpha t} u(t), \quad \alpha > 0$$

• Calculate the average power of the following continuous time signal:

$$x(t) = A_0 \sin \omega_0 t$$

Example #2

• Determine whether the following signals are energy signals or power signals:

$$(1): \quad x[n] = (1/3)^n u[n]$$

(2):
$$x[n] = A_0 u[n]$$

Periodic v/s Aperiodic

- A signal is said to be periodic if it repeats itself after a regular interval of time.
- Definition-1: A continuous time signal x(t) is periodic if there is a constant T > 0 such that:

$$x(t) = x(t \pm nT),$$
 for all $t \in R$

• Definition-2: A discrete time signal x[n] is periodic if there is an integer constant N > 0 such that:

$$x[n] = x[n \pm mN], \quad \text{for all } n \in \mathbb{Z}$$

 Signals do not satisfy the periodicity conditions are called aperiodic signals.

Periodic v/s Aperiodic (cont.)

- T_o is called the fundamental period of x(t) if it is the smallest value of T > 0 satisfying the periodicity condition. The number $\omega_o = \frac{2\pi}{T_o}$ is called the fundamental frequency of x(t).
- N_o is called the fundamental period of x[n] if it is smallest value of N > 0 where $N \in Z$ satisfying the periodicity condition. The number $\frac{\Omega_0}{2\pi} = \frac{m}{N}$ is called the fundamental frequency of x[n].

Example #3

• Calculate the fundamental time period of the following signals:

$$(1): \ \mathcal{X}(t) = A_0 e^{j\omega_0 t}$$

• (2):
$$x[n] = \cos\left[\frac{3\pi}{4}n\right]$$

Example #4

• Calculate the fundamental time period of the following composite signals:

$$(1): x(t) = \sin 6\pi t + \cos 5\pi t$$

(2):
$$x[n] = \sin\left[\frac{3\pi}{4}n\right] + \cos\left[\frac{5\pi}{7}n\right]$$

Even & Odd Signals

- An even signal is any signal f such that x(t) = x(-t) or x[n]=x[-n]
- A signal x(t) or x[n] is referred to as an even signal if it is identical to its time-reversed counterpart, i.e., with its reflection about the origin.
- An odd signal on the other hand is a signal f such that x(t) = -(x(-t)) or x[n] = -(x[-n]).

Even & Odd Signals (cont.)

• Any signal can be written as a combination of an even and odd signal, i.e., every signal has an odd-even decomposition.

$$x(t) = x_{e}(t) + x_{o}(t)$$

$$x(t) = \frac{1}{2}(x(t) + x(-t)) + \frac{1}{2}(x(t) - x(-t))$$

$$x[n] = x_{e}[n] + x_{o}[n]$$

$$x[n] = \frac{1}{2}(x[n] + x[-n]) + \frac{1}{2}(x[n] - x[-n])$$

Even & Odd Signals (cont.)

• The all-zero signal is both even and odd. Any other signal cannot be both even and odd, but may be neither.

Example #5

 Find the even and odd components of following signals:

• (1):
$$x(t) = \cos(t) + \sin(t) + \cos(t)\sin(t)$$

(2):
$$x[n] = \{-4-5j, 1+2j, 4\}$$

Continuous-Time Complex Exponential

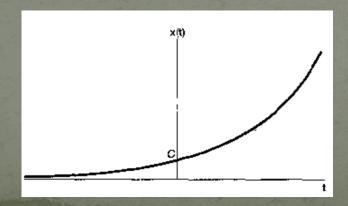
• The continuous-time complex exponential signal is of the form:

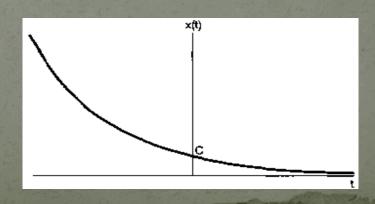
$$x(t) = Ce^{at}$$
, where C , $a \in C$

• Depending upon the values of these parameters, the complex exponential can exhibit several different characteristics.

Real Exponential Signals

- If C and a are real there are basically two types of behavior.
- If a is positive, then as t increase x(t) is a growing exponential, i.e., when a>o.
- If a is negative then x(t) is a decaying exponential, i.e., when a<0.
- When a=0 then x(t) is constant.





Periodic Complex Exponential

- Let's consider the case where a is purely imaginary, i.e., $a = j\omega_0$, ω_0 belongs to R.
- Since C is a complex number, we have: $C = Ae^{j\theta}$ where A, θ belongs to R.

Consequently:

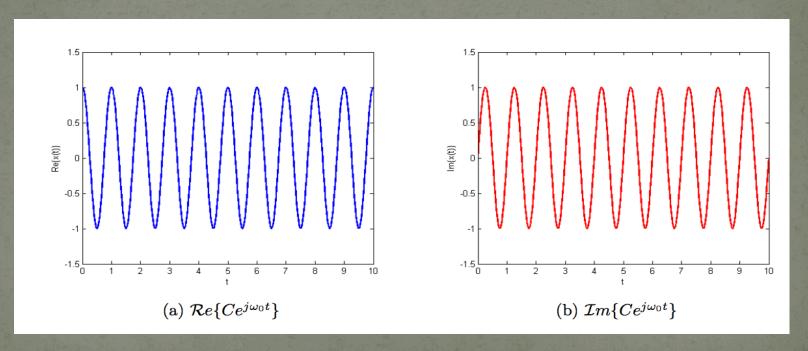
$$x(t) = Ce^{j\omega_0 t} = Ae^{j\theta}e^{j\omega_0 t}$$

 $= Ae^{j(\omega_0 t + \theta)} = A\cos(\omega_0 t + \theta) + jA\sin(\omega_0 t + \theta)$ • The real and imaginary parts of x(t) are:

$$\operatorname{Re}\left\{x(t)\right\} = A\cos(\omega_0 t + \theta)$$
$$\operatorname{Im}\left\{x(t)\right\} = A\sin(\omega_0 t + \theta)$$

Periodic Complex Exponential (cont.)

• We can think of x(t) as a pair of sinusoidal signals of the same amplitude A, ω_o and phase shift θ with one a cosine and the other a sine.



Periodic complex exponential function $x(t) = Ce^{j\omega ot}$, C=1, $\omega_o=2\pi$

Periodic Complex Exponential (cont.)

- $x(t) = Ce^{j\omega_0 t}$ is periodic with:
- Fundamental period: $T_0 = 2\pi/|\omega_0|$
- Fundamental frequency: $|\omega_0|$
- The second claim is the immediate result from the first claim. To show the first claim, we need to show that $x(t+T_0) = x(t)$ and no smaller T_0 can satisfy the periodicity criteria. $x(t+T_0) = Ce^{j\omega_0\left(t+\frac{2\pi}{|\omega_0|}\right)} = Ce^{j\omega_0t}e^{\pm j2\pi}$

$$x(t+T_0) = Ce^{j\omega_0[t+\overline{|\omega_0|}]} = Ce^{j\omega_0t}e^{\pm j2\pi}$$
$$= Ce^{j\omega_0t} = x(t)$$

• It is easy to show that T_o is the smallest period.

General Complex Exponential

- The most general case of a complex exponential can be expressed and interpreted in terms of the two cases: the real exponential and the periodic complex exponential.
- Consider a complex exponential Ceat, where C is expressed in polar form and a in rectangular form i.e., $C = |C|e^{j\theta}$
- And: $a = r + j\omega_0$
- Then:

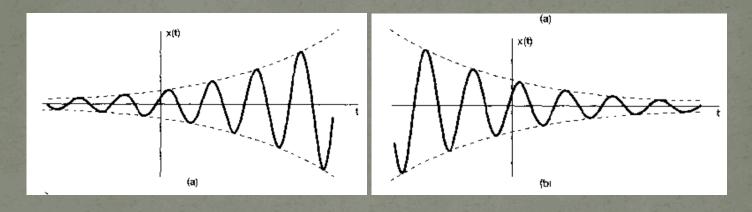
$$Ce^{at} = |C|e^{j\theta}e^{(r+j\omega_0)t} = |C|e^{rt}e^{j(\omega_0t+\theta)}$$

General Complex Exponential (cont.)

- Using Euler's relation, we can expand this further as: $Ce^{at} = |C|e^{rt}\cos(\omega_0 t + \theta) + j|C|e^{rt}\sin(\omega_0 t + \theta)$
- Thus for r=o, the real and imaginary parts of a complex exponential are sinusoidal.
- For r>o they correspond to sinusoidal signals multiplied by a growing exponential.
- For r < 0, they correspond to sinusoidal signals multiplied by a decaying exponential.

General Complex Exponential (cont.)

• As shown below: (a) is growing sinusoidal signal when r>0, (b) is decaying sinusoid when r<0.



 Sinusoidal signals multiplied by decaying exponentials are commonly referred to as damped signals.

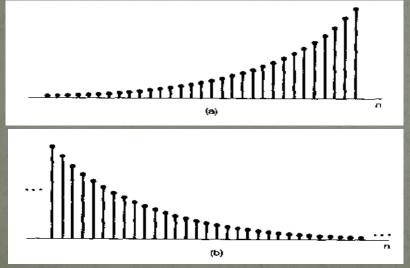
Discrete Time Complex Exponential

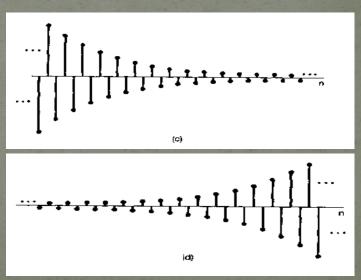
- A discrete-time complex exponential function has the form: $x \lceil n \rceil = Ce^{\beta n}$
- Where C, β belongs to Complex. Letting $\alpha=e^{\beta}$:

$$x[n] = C\alpha^n$$

Real-Valued Complex Exponential

- x[n] is a real-valued complex exponential when C belongs to R and α belongs to R.
- In this case, $x[n]=C\alpha^n$ is a monotonic decreasing function when $o < \alpha < 1$ and is a monotonic increasing when $\alpha > 1$.





The real exponential signal (a) $\alpha>1$, (b) $0<\alpha<1$, (c) $-1<\alpha<0$, (d) $\alpha<-1$

Complex-Valued Complex Exponential

- x[n] is a complex-valued complex exponential when C,α belongs to complex.
- In this case C and α can be written as:

$$C = |C|e^{j\theta}$$
 and $\alpha = |\alpha|e^{j\Omega_0}$

Comsequently,

$$x[n] = C\alpha^{n} = |C|e^{j\theta} (|\alpha|e^{j\Omega_{0}})^{n}$$

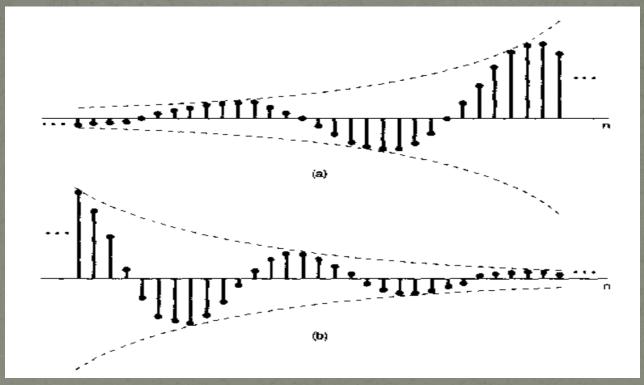
$$= |C||\alpha|^n e^{j(\Omega_0 n + \theta)}$$

$$= |C||\alpha|^n \cos(\Omega_0 n + \theta) + j|C||\alpha|^n \sin(\Omega_0 n + \theta)$$

Complex-Valued Complex Exponential (cont.)

- Three cases can be considered here:
 - When $|\alpha|=1$, then $x[n]=|C|\cos{(\Omega_o n+\theta)}+j|C|\sin{(\Omega_o n+\theta)}$ and it has sinusoidal real and imaginary parts (not necessarily periodic though).
 - When $|\alpha| > 1$, then $|\alpha|^n$ is a growing exponential, so the real and imaginary parts of x[n] are the product of this with sinusoids.
 - When $|\alpha| < 1$, then the real and imaginary parts of x[n] are sinusoids sealed by a decaying exponential.

Complex-Valued Complex Exponential (cont.)



(a) Growing Discrete-time sinusoidal signals (b) decaying discrete time sinusoid

Periodic Complex Exponential

- Consider $x[n] = Ce^{j\Omega_0 n}$, $\Omega_0 \in \mathbb{R}$. We want to study the condition for x[n] to be periodic.
- The periodicity condition requires that, for some N>0,

$$x[n+N] = x[n], \quad \forall n \in \mathbb{Z}$$

• Since $x[n] = Ce^{j\Omega_0 n}$, it holds that:

$$e^{j\Omega_0(n+N)} = e^{j\Omega_0 n} e^{j\Omega_0 N} = e^{j\Omega_0 n}, \quad \forall n \in \mathbb{Z}$$

• This is equivalent to:

$$e^{j\Omega_0 N} = 1$$
 or $\Omega_0 N = 2\pi m$, for some $m \in \mathbb{Z}$

Periodic Complex Exponential(cont.)

• Therefore, the condition for periodicity of x[n] is:

$$\Omega_0 = \frac{2\pi m}{N}$$

- For some m belongs to Z and some $\overline{N}>0$, N belongs to Z.
- Thus $x[n] = e^{j\Omega on}$ is periodic if and only if Ω_o is a rational multiple of 2π .
- The fundamental period is:

$$N = \frac{2\pi m}{\Omega_0}$$

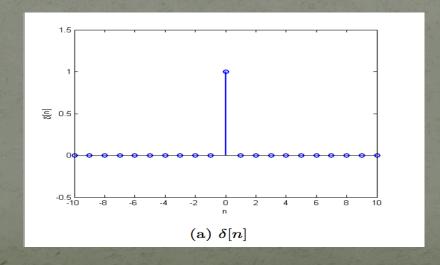
Impulse & Unit Step Functions

Unit Impulse Function

• It is also known as Dirac delta function.

$$\delta(t) = \begin{cases} 1 & for \quad t = 0 \\ 0 & for \quad t \neq 0 \end{cases}$$

$$\delta(n) = \begin{cases} 1 & for \quad n = 0 \\ 0 & for \quad n \neq 0 \end{cases}$$



Unit Impulse Function

• The area of unit impulse function is always equal to '1'.

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

Properties of Impulse Function

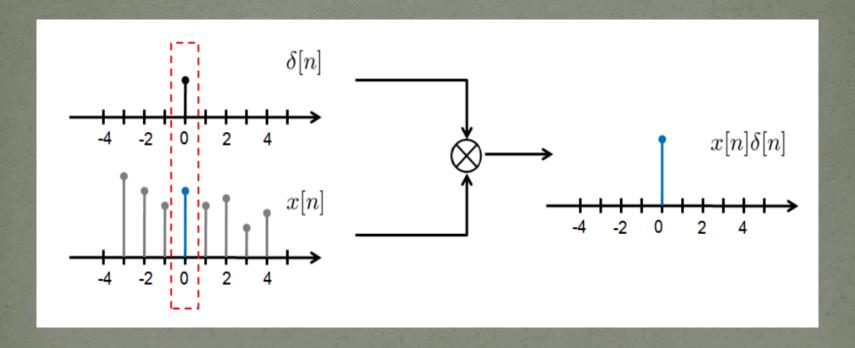
• Sampling Property for $\delta[n]$:

• By the definition $\delta[n]$, $\delta[n-n_o] = 1$ if $n=n_o$ and o otherwise.

Therefore, $x[n]\delta[n-n_0] = \begin{cases} x[n], & n=n_0 \\ 0, & n \neq n_0 \end{cases}$ $= x[n_0]\delta[n-n_0]$

- As a special case when $n_o=0$, we have $x[n] \delta[n] = x[o]\delta[n]$.
- When a signal x[n] is multiplied with $\delta[n]$, the output is a unit impulse with amplitude x[o].

• Sampling Property for $\delta[n]$: (cont.)



• Sampling Property of $\delta(t)$:

$$x(t)\delta(t) = x(0)\delta(t)$$

- Note that $x(t) \delta(t) = x(o)$ when t=o and $x(t) \delta(t) = o$ when $t\neq o$.
- Similarly we have:

$$x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$$
for any $t_0 \in R$

• Shifting Property of $\delta[n]$:

Since $x[n] \delta[n] = x[o] \delta[n]$ and $\sum_{n=\infty}^{\infty} \delta[n] = 1$, we have

$$\sum_{n=-\infty}^{\infty} x[n] \delta[n] = \sum_{n=-\infty}^{\infty} x[0] \delta[n] = x[0] \sum_{n=-\infty}^{\infty} \delta[n] = x[0]$$

• And similarly:

$$\sum_{n=-\infty}^{\infty} x[n] \delta[n-n_0] = \sum_{n=-\infty}^{\infty} x[n_0] \delta[n-n_0] = x[n_0]$$

In general, the following result holds:

$$\sum_{n=a}^{b} x[n]\delta[n-n_0] = \begin{cases} x[n_0], & if \quad n_0 \in [a,b] \\ 0, & if \quad n_0 \notin [a,b] \end{cases}$$

- Shifting Property of $\delta(t)$:
 - The shifting property follows from the sampling property.
 - Integrating $x(t) \delta(t)$ yields:

$$\int_{-\infty}^{\infty} x(t)\delta(t)dt = \int_{-\infty}^{\infty} x(0)\delta(t)dt = x(0)\int_{-\infty}^{\infty} \delta(t)dt = x(0)$$

Similarly, one can show that:

$$\int_{-\infty}^{\infty} x(t)\delta(t-t_0)dt = x(t_0)$$

- Even & Odd:
 - $\delta[n] = \delta[-n]$ hence, it is an even signal.
 - Also $\delta(t) = \overline{\delta(-t)}$, therefore it is also an even signal.
- Power or Energy Signal:
 - $\delta[n]$ is an energy signal as 'o < E $\{\delta[n]\}$ < ∞ ".
 - $t=0 \Rightarrow$ magnitude = ∞ . Therefore it is NENP.

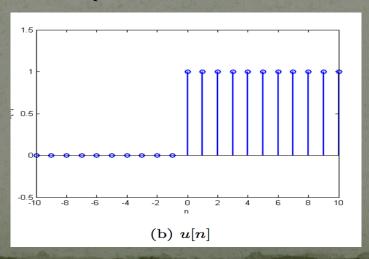
Unit Step Function

• The unit step function for continuous time is defined as:

 $u(t) = \begin{cases} 1 & for \quad t \ge 0 \\ 0 & for \quad t < 0 \end{cases}$

• The unit step function for discrete time is defined as:

$$u(n) = \begin{cases} 1 & for & n \ge 0 \\ 0 & for & n < 0 \end{cases}$$



Difference b/w Unit Impulse & Unit Step Sequences

- Discrete time unit impulse is the first difference of the discrete time unit step. I.e.; $\delta[n]=u[n]-u[n-1]$
- Discrete time unit step is the running sum of the discrete time unit impulse or unit sample. i.e.;

$$u[n] = \sum_{m=-\infty}^{n} \delta[m]$$

The End