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�  A	 general	 Nth-order	 linear	 constant-coefficient	
differential	equation	is	given	by:	

	
	
� Where	coefficients	ak	and	bk	are	real	constants.		
�  The	order	N	refers	to	the	highest	derivative	of	y(t).	
�  The	 general	 solution	 of	 above	 equation	 for	 a	
particular	input	x(t)	is	given	by:	

ak
d k y t( )
dt kk =0

N

∑ = bk
d k x t( )
dt kk =0

M

∑

y t( ) = y p t( )+ yh t( )



� Where	yp(t)	is	a	particular	solution.	
�  yh(t)	 is	 a	 homogeneous	 solution,	 satisfying	 the	
homogeneous	differential	equation:	

	
ak
d k yh t( )
dt kk =0

N

∑ = 0



�  For	the	linear	system	to	be	causal	we	must	assume	the	
condition	of	 initial	 rest,	 i.e.,	 if	 x(t)=0	 for	 t	 ≤	 t0,	 then	
assume	y(t)=0	for	t	≤	t0.		

�  Thus,	 the	 response	 for	 t	 >	 t0	 can	 be	 calculated	with	
the	initial	conditions:	

	

y t0( ) =
dy t0( )
dt

= ...=
d N −1 y t0( )
dt N −1

= 0

where
d k y t0( )
dt k

=
d k y t( )
dt k

t=t0



�  The	 Nth-order	 linear	 constant	 coefficient	 difference	
equation	is:	

�  The	 solution	 y[n]	 can	 be	 written	 as	 the	 sum	 of	 a	
particular	 solution	 and	 a	 solution	 to	 the	
homogeneous	equation	is:	

�  The	solution	to	this	homogeneous	equations	are	often	
referred	to	as	the	natural	responses	of	the	system.	

ak y n − k⎡⎣ ⎤⎦
k =0

N

∑ = bk x n − k⎡⎣ ⎤⎦
k =0

M

∑

ak y n − k⎡⎣ ⎤⎦
k =0

N

∑ = 0



�  For	 auxiliary	 conditions	 we	 will	 focus	 on	 the	
condition	of	initial	rest.	

�  That	is	if	x[n]=0	for	n	<	n0,	then	y[n]=0	for	n	<	n0.	
� With	initial	rest	the	system	is	LTI	and	causal.	
�  The	above	equation	can	be	rearranged	in	the	form:	

�  These	equations	are	known	as	recursive	equation.	
�  In	 the	 special	 case	 when	 N=0,	 the	 above	 equation	
reduces	to:	

y n⎡⎣ ⎤⎦=
1
a0

bk x n − k⎡⎣ ⎤⎦
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∑
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�  Here	 y[n]	 is	 an	 explicit	 function	 of	 the	 present	 and	
previous	values	of	the	input.	

�  Above	 equation	 is	 also	 known	 as	 non-recursive	
equation.	

�  The	 above	 equation	 describes	 an	 LTI	 system	 and	 by	
direct	 computation,	 the	 impulse	 response	 of	 this	
system	is	found	to	be:	

	
�  The	 above	 equation	 is	 nothing	 more	 than	 the	
convolution	sum.	

h n⎡⎣ ⎤⎦=
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�  Consider	the	difference	equation:	

y n⎡⎣ ⎤⎦−
1
2
y n −1⎡⎣ ⎤⎦= x n⎡⎣ ⎤⎦



�  The	discrete-time	system	shown	below	consists	of	one	
unit	delay	element	and	one	scalar	multiplier.	Write	a	
difference	 equation	 that	 relates	 the	 output	 y[n]	 and	
the	input	x[n].	



�  Find	 the	 impulse	 response	 h[n]	 for	 the	 causal	 LTI	
discrete-time	 system	 satisfying	 the	 following	
difference	equation:	

y n⎡⎣ ⎤⎦−
1
2
y n − 2⎡⎣ ⎤⎦= 2x n⎡⎣ ⎤⎦− x n − 2⎡⎣ ⎤⎦





�  In	 1822,	 the	French	mathematician	 J.B.J.	 Fourier	had	 first	
studied	 the	 periodic	 function	 and	 published	 his	 famous	
theorem.	

�  It	 states	 that	 any	 periodic	 signal	 can	 be	 resolved	 into	
sinusoidal	components.	

�  Fourier	 series	 is	 the	 resulting	 summation	 of	 harmonic	
sinusoid.	

�  The	signal	can	be	in	time	domain	or	in	frequency	domain.	
�  T	 can	 be	 represented	 either	 in	 the	 form	 of	 infinite	
trigonometric	series	or	in	the	form	of	exponential	series.	





�  Based	 on	 superposition	 property	 of	 LTI	 systems,	
response	to	any	input	including	linear	combination	of	
basic	 signal	 is	 the	 same	 linear	 combination	 of	 the	
individual	responses	to	each	of	the	basic	signals.	

�  Continuous-time	 and	 Discrete-time	 periodic	 signals	
are	described	by	Fourier	Series.	

�  Aperiodic	signals	are	described	by	Fourier	Transform.	



�  For	analyzing	LTI	systems,	the	signals	can	be	represented	
as	a	linear	combination	of	basic	signals.	

�  Basic	signals	possess	the	following	two	properties:	
�  The	set	of	basic	signals	can	be	used	to	construct	a	broad	and	

useful	class	of	signals.	
�  Should	have	simple	structure	in	LTI	system	response.	

�  Both	 of	 these	 properties	 are	 provided	 by	 the	 set	 of	
complex	 exponential	 signals	 in	 continuous	 and	 discrete	
time.	

�  The	 response	of	 an	LTI	 system	 to	 a	 complex	 exponential	
input	is	the	same	complex	exponential	with	only	a	change	
in	amplitude.	



�  For	Continuous	time:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	where	H(s)	 is	a	
function	of	s.	

�  For	Discrete	time:																												where	H(z)	is	a	
function	of	z.	

est →H s( )est

zn →H z( ) zn



�  If	the	output	is	a	scaled	version	of	its	input,	then	the	
input	 function	 is	 called	 an	 Eigenfunction	 of	 the	
system.		

�  The	 scaling	 factor	 is	 called	 the	 eigenvalue	 of	 the	
system.	

	



�  Consider	 an	 LTI	 system	 with	 impulse	 response	 h(t)	
and	input	signal	x(t).	

�  Suppose	 that	x(t)	=	est	 for	 some	s	belongs	 to	C,	 then	
the	output	is	given	by:	

y t( ) = h t( )∗ x t( ) = h τ( ) x t −τ( )d τ
−∞

∞

∫

= h τ( )e s t−τ( ) d τ
−∞

∞

∫



� Where	H(s)	is	defined	as:	

�  From	the	above	derivation	we	see	that	 if	 the	input	 is	
x(t)	 =	 est,	 then	 the	 output	 is	 a	 scaled	 version	 y(t)	 =	
H(s)	est	.	

= e st h τ( )e −sτ d τ
−∞

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥= H s( )e st = H s( ) x t( )

H s( ) = h τ( )e−sτ dτ
−∞

∞

∫



�  Therefore,	using	the	definition	 	of	Eigen-function,	we	
show	that:	
�  est	 is	 an	 Eigenfunction	 of	 any	 continuous-time	 LTI	
system	

�  H(s)	is	the	corresponding	eigenvalue.	
�  Considering	 the	 subclass	 of	 periodic	 complex	
exponentials	 of	 the	 ejωt,	 ω	 belongs	 to	 R	 by	 setting	
s=jω,	then:	

�  H(jω)	is	called	the	frequency	response	of	the	system.	

H s( ) s= jω = H jω( ) = h τ( )e− jωτ dτ
−∞

∞

∫



�  In	parallel	manner	we	can	show	that	complex	exponential	
sequences	 are	 Eigenfunctions	 of	 discrete-time	 LTI	
systems.	

�  Suppose	tat	the	impulse	response	is	given	by	h[n]	and	the	
input	is	x[n]=zn,	then	the	output	y[n]	is:	

�  Where:	

y n[ ] = h n[ ]∗ x n[ ] = h k[ ] x n− k[ ]
k=−∞

∞

∑

= h k[ ] z n−k[ ]

k=−∞

∞

∑ = zn h k[ ] z−k
k=−∞

∞

∑ = H z( ) zn

H z( ) = h k[ ] z−k
k=−∞

∞

∑



�  This	result	indicates:	
�  zn		is	an	Eigenfunction	of	a	discrete-time	LTI	system	
�  H(z)	is	the	corresponding	eigenvalue.	

�  Considering	 the	 subclass	 of	 periodic	 complex	
exponentials	e-j(2π/N)n	by	setting	z=	ej2π/N,	we	have:	

H z( ) z=e jΩ = H ejΩ( ) = h k[ ]e− jΩk
k=−∞

∞

∑

where Ω =
2π
N



�  And	 H(ejΩ)	 is	 called	 the	 frequency	 response	 of	 the	
system.	



�  The	usefulness	of	Eigenfunctions	can	be	seen	from	an	
example.	

�  Lets	consider	a	signal	x(t):	

�  According	 to	 the	Eigenfunction	 analysis	 ,	 the	output	
of	each	complex	exponential	is:	

x t( ) = a1es1t + a2es2t + a3es3t

es1t →H s1( )es1t

es2t →H s2( )es2t

es3t →H s3( )es3t



�  From	the	 superposition	property	 the	 response	 to	 the	
sum	is	the	sum	of	the	responses,	so	that:	

�  The	 result	 implies	 that	 if	 the	 input	 is	 a	 linear	
combination	 of	 complex	 exponentials,	 the	 output	 of	
an	 LTI	 system	 is	 an	 infinite	 sum	 of	 complex	
exponentials.	

� More	 generally,	 if	 x(t)	 is	 an	 infinite	 sum	of	 complex	
exponentials,	

y t( ) = a1H s1( )e s1t +a2H s2( )e s2t +a3H s3( )e s3t

x t( ) = ake
skt

k=−∞

∞

∑



�  Then	the	output	is:	

�  Similarly	for	discrete-time	signals,	if:	

y t( ) = akH sk( )eskt
k=−∞

∞

∑

x n[ ] = akzk
n

k=−∞

∞

∑

then

y n[ ] = akH zk( ) zkn
k=−∞

∞

∑



�  This	 is	 an	 important	 observation,	 because	 as	 long	 as	
we	can	express	a	signal	x(t)	as	a	linear	combination	of	
Eigenfunctions,	 then	 the	 output	 y(t)	 can	 be	 easily	
determined	by	looking	at	the	transfer	function.	Same	
goes	for	discrete-time.	

�  The	transfer	function	is	fixed	for	an	LTI	system.	



�  Consider	 a	 continuous-time	 LTI	 system	 with	 the	
input-output	relation	given	by:	

�  (a):	Find	the	impulse	response	h(t)	of	this	system.	
�  (b):	Show	that	the	complex	exponential	function	est	is	
an	Eigenfunction	of	the	system.	

�  (c):	Find	 the	eigenvalue	of	 the	 system	corresponding	
to	est	by	using	 the	 impulse	 response	h(t)	obtained	 in	
part	(a).	

y t( ) = e − t−τ( )x τ( )d τ
−∞

t

∫




