Signal & Systems

Lecture # 8 Fourier Series - 1

26th November 18

Fourier Series

Introduction to Fourier Series

 Fourier series expansion is used for periodic signals to expand them in term of their harmonics which are sinusoidal and orthogonal to one another.

- Fourier series is used for analysis purpose.
- For aperiodic signals we have Fourier transform.

Fourier Series of Continuous-Time Periodic Signals

Fourier Series of Continuous-Time

- According to the definition of periodic signals: x(t) = x(t+T) with fundamental period T and fundamental frequency $\omega o = 2\pi/T$.
- We have also discussed two basic signals, the sinusoidal signal: $x(t)=\cos\omega_{o}t$ and the periodic complex exponential $x(t) = e^{j\omega_{o}t}$.
- Both of these signals are periodic with fundamental frequency ωο and the fundamental period T=2π/ωο.
 Harmonically related complex exponentials:

$$\phi_k(t) = e^{jk\omega_0 t} = e^{jk(2\pi/T)t}, k = 0, \pm 1, \pm 2, \dots$$

Fourier Series of Continuous-Time (cont.)

• Each harmonic has fundamental frequency which is multiple of ωo .

• A Linear combination of harmonically related complex exponentials:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} a_k e^{jk(2\pi/T)t}$$

Above equation is also periodic with period T.
k=±1 have fundamental frequency ω_o (first harmonic)
k=±N have fundamental frequency Nω_o (Nth harmonic)

Continuous-Time Fourier Series Coefficients

 Theorem: The continuous-time Fourier series coefficients a_k of the signal:

$$x(t) = \sum_{k=-\infty} a_k e^{jk\omega_0 t}, \quad Synthesis \quad Equation$$
$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt, \quad Analysis \quad Equation$$

• Is given by:

• Proof:

• Let us consider the signal: $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$

• If we multiply $e^{-jn\omega_0 t}$ on both sides, then we have:

Continuous-Time Fourier Series Coefficients (cont.)

$$x(t)e^{-jn\omega_0 t} = \left[\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}\right]e^{-jn\omega_0 t} = \sum_{k=-\infty}^{\infty} a_k e^{j(k-n)\omega_0 t}$$

 Integrating both sides from o to T yields: (T is the fundamental period of x(t))

 $k = -\infty$

0

$$\int_{0}^{T} x(t) e^{-jn\omega_{0}t} dt = \int_{0}^{T} \left[\sum_{k=-\infty}^{\infty} a_{k} e^{j(k-n)\omega_{0}t} \right] dt$$
$$= \sum_{k=-\infty}^{\infty} \left[a_{k} \int_{0}^{T} e^{j(k-n)\omega_{0}t} dt \right]$$

Continuous-Time Fourier Series Coefficients (cont.)

• Use Euler's formula:

 $\int_{-\infty}^{T} e^{j(k-n)\omega_0 t} dt = \int_{-\infty}^{T} \cos\left(\left(k-n\right)\omega_0 t\right) dt + j \int_{-\infty}^{T} \sin\left(\left(k-n\right)\omega_0 t\right) dt$ • For $k \neq n$, $\cos(k-n)\omega_0 t$ and $\sin(k-n)\omega_0 t$ are periodic sinusoids with fundamental period (T/|k-n|). • Therefore: $\frac{1}{T}\int_{0}^{T} e^{j(k-n)\omega_{0}t} dt = \begin{cases} 1 & \text{if } k = n \\ 0 & \text{otherwise} \end{cases}$ • This result is known as the orthogonality of complex exponentials.

Continuous-Time Fourier Series Coefficients (cont.)

• Using above equation we have:

$$\int_{0}^{T} x(t) e^{-jn\omega_0 t} dt = Ta_n$$

• Which is equivalent to:

$$a_n = \frac{1}{T} \int_0^T x(t) e^{-jn\omega_0 t} dt$$

• Dc or constant component of x(t):

$$a_0 = \frac{1}{T} \int_T x(t) dt$$

Example #1

- Consider the signal: x(t) = 1 + ¹/₂ cos 2πt + sin 3πt
 The period of x(t) is T=2, so the fundamental frequency is ω_o=2π/T=π.
- Recall Euler's formula $e^{j\theta} = \cos\theta + j\sin\theta$, we have:

$$x(t) = 1 + \frac{1}{4} \left[e^{j2\pi t} + e^{-j2\pi t} \right] + \frac{1}{2j} \left[e^{j3\pi t} - e^{-j3\pi t} \right]$$

 $a_0 = 1$, $a_1 = a_{-1} = 0$, $a_2 = a_{-2} = \frac{1}{4}$, $a_3 = \frac{1}{2j}$, $a_{-3} = -\frac{1}{2j}$

and $a_k = 0$ otherwise

Convergence of the Fourier Series

Existence of Fourier Series

 To understand the validity of Fourier Series representation, lets examine the problem of approximation a given periodic signal x(t) by a linear combination of a finite number of harmonically related complex exponentials.

• That is by finite series of the form:

$$x_N(t) = \sum_{k=-N}^N a_k e^{jk\omega_0 t}$$

• Let e_N(t) denote the approximation error; i.e.,

$$e_{N}(t) = x(t) - x_{N}(t) = x(t) - \sum_{k=-N}^{N} a_{k}e^{jk\omega_{0}t}$$

Existence of Fourier Series (cont.)

• The criterion that we will use is the energy in the error over one period:

 $E_N(t) = \int_T \left| e_N(t) \right|^2 dt$

• To achieve min E_N, one should define:

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

As N increases, E_N decreases and as N→∞ E_N is zero.
If a_k→∞ the approximation will diverge.
Even for bounded a_k the approximation may not be applicable for all periodic signals.

Convergence Conditions of Fourier Series Approximation

• Energy of signal should be a finite in a period: $\int |x(t)|^2 dt < \infty$

This condition only guarantees EN\o.
It does not guarantee that x(t) equals to its Fourier series at each moment t.

Convergence Conditions of Fourier Series Approximation (cont.)

• Dirichlet Conditions:

Over any period x(t) must be absolutely integrable. In any finite interval of time x(t) is of bounded variation, i.e., there are no more than a finite number of maxima and minima during any single period of the

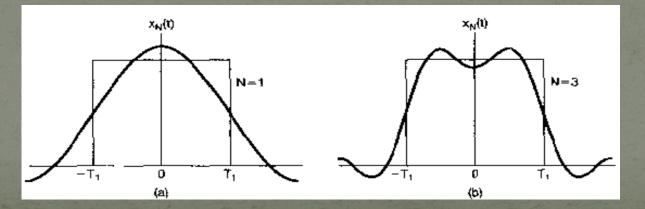
signal.

In any finite interval of time, there are only a finite number of discontinuities.

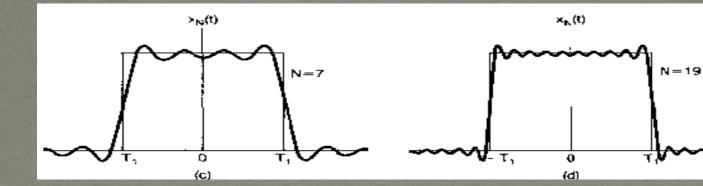
Gibbs Phenomenon

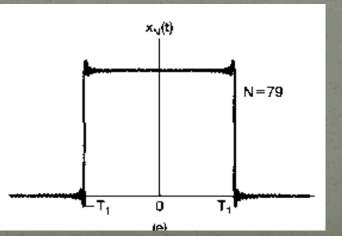
 Near a point where x(t) has a jump discontinuity, the partial sums x_N (t) of a Fourier series exhibit a substantial overshoot near these endpoints.

 An increase in N will not diminish the amplitude of the overshoot, although with increasing N the overshoot occurs over smaller and smaller intervals.
 This phenomenon is known as Gibbs Phenomenon.



Gibbs Phenomenon (cont.)





Fourier Series Representation of Discrete-Time Periodic Signals

Fourier Series Representation of Discrete Time

 The Fourier series representation of a discrete-time periodic signal is finite as opposed to the infinite series representation required for continuous-time periodic signals.

Linear Combinations of Harmonically Related Complex Exponentials

 A discrete-time signal x[n] is periodic with period N if: x[n] = x[n+N].

• The fundamental period is the smallest positive N and the fundamental frequency is $\omega_0 = \frac{2\pi}{N}$.

• The set of all discrete-time complex exponential signals that are periodic with period N is given by:

$$\phi_k[n] = e^{jk\omega_0 n} = e^{jk(2\pi/N)n}, \quad k = 0, \pm 1, \pm 2, \dots$$

• All of these signals have fundamental frequencies that are multiples of $2\pi/N$ and thus are harmonically related.

Linear Combinations of Harmonically Related Complex Exponentials (cont.)

 There are only N distinct signals in the set this is because the discrete-time complex exponentials which differ in frequency by a multiple of 2π are identical. That is:

$$\phi_k[n] = \phi_{k+rN}[n]$$

 The representation of periodic sequences in terms of linear combinations of the sequences Φ_k[n] is:

$$x[n] = \sum_{k} a_k \phi_k[n] = \sum_{k} a_k e^{jk\omega_0 n} = \sum_{k} a_k e^{jk(2\pi/N)n}$$

Since the sequences Φ_k[n] are distinct over a range of N successive values of k, the summation in above equation need include terms over this range.

Linear Combinations of Harmonically Related Complex Exponentials (cont.)

Thus the summation is on k as k varies over a range of N successive integers beginning with any value of k.
We indicate this by expressing the limits of the summation as k=<N>. That is:

$$x[n] = \sum_{k = \langle N \rangle} a_k \phi_k[n] = \sum_{k = \langle N \rangle} a_k e^{jk\omega_0 n} = \sum_{k = \langle N \rangle} a_k e^{jk(2\pi/N)n}$$

Discrete-Time Fourier Series Coefficients

- Assuming x[n] is square-summable i.e., ∑_{n=-∞} |x[n]|² < ∞ or x[n] satisfies the Dirichlet conditions.
- In this case we have:

 $x[n] = \sum_{k = \langle N \rangle} a_k e^{jk\omega_0 n} = \sum_{k = \langle N \rangle} a_k e^{jk(2\pi/N)n}, \quad Synthesis \quad Equation$

 $a_{k} = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_{0}n} = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(2\pi/N)n}, \quad \text{Analysis} \quad \text{Equation}$

 As in continuous time, the discrete-time Fourier series coefficient a_k are often referred to as the spectral coefficients of x[n].

Discrete-Time Fourier Series Coefficients (cont.)

 These coefficients specify a decomposition of x[n] into a sum of N harmonically related complex exponentials.

Example #2

• Consider the signal:

 $x[n] = \sin \omega_0 n$

• Which is the discrete-time counterpart of the signal $x(t) = \sin \omega_0 t$.

 x[n] is periodic only if 2π/ωο is an integer or a ratio of integers.

The End