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�  Fourier	series	expansion	is	used	for	periodic	signals	to	
expand	 them	 in	 term	 of	 their	 harmonics	 which	 are	
sinusoidal	and	orthogonal	to	one	another.	

�  Fourier	series	is	used	for	analysis	purpose.	
�  For	aperiodic	signals	we	have	Fourier	transform.		





�  According	to	the	definition	of	periodic	signals:	x(t)	=	
x(t+T)	 with	 fundamental	 period	 T	 and	 fundamental	
frequency	ω0=2π/T.	

� We	 have	 also	 discussed	 two	 basic	 signals,	 the	
sinusoidal	 signal:	 x(t)=cosω0t	 and	 the	 periodic	
complex	exponential	x(t)	=	ejωot.	

�  Both	 of	 these	 signals	 are	 periodic	 with	 fundamental	
frequency	ω0	and	the	fundamental	period	T=2π/ω0	.	

�  Harmonically	related	complex	exponentials:	

φk t( ) = e jkω0t = e
jk 2π /T( )t,k = 0,±1,±2,......



�  Each	 harmonic	 has	 fundamental	 frequency	 which	 is	
multiple	of	ω0.	

�  A	 Linear	 combination	 of	 harmonically	 related	
complex	exponentials:	

�  Above	equation	is	also	periodic	with	period	T.		
�  k=±1	have	fundamental	frequency	ω0	(first	harmonic)	
�  k=±N	 have	 fundamental	 frequency	 Nω0	 (Nth	
harmonic)	

x t( ) = ake
jkω0t

k=−∞

∞

∑ = ake
jk 2π /T( )t

k=−∞

∞

∑



�  Theorem:	 The	 continuous-time	 Fourier	 series	
coefficients	ak	of	the	signal:	

�  Is	given	by:	

�  Proof:	
�  Let	us	consider	the	signal:	

�  If	we	multiply										on	both	sides,	then	we	have:	

x t( ) = ake
jkω0t

k=−∞

∞

∑ , Synthesis Equation

ak =
1
T

x t( )e− jkω0t dt
T
∫ , Analysis Equation

x t( ) = ake
jkω0t

k=−∞

∞

∑

e− jnω0t



�  Integrating	 both	 sides	 from	 0	 to	 T	 yields:	 (T	 is	 the	
fundamental	period	of	x(t)	)		

x t( )e− jnω0t = ake
jkω0t
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∞

∑
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x t( )e− jnω0t dt
0

T
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∞
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0

T
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�  Use	Euler’s	formula:	

	
�  For	 k≠n,	 cos(k-n)ω0t	 and	 sin(k-n)ω0t	 are	 periodic	
sinusoids	with	fundamental	period	(T/|k-n|).	

�  Therefore:	

� This	 result	 is	 known	 as	 the	 orthogonality	 of	
complex	exponentials.	

	

e j k−n( )ω0t dt
0

T

∫ = cos k − n( )ω0t( )dt
0

T

∫ + j sin k − n( )ω0t( )dt
0

T

∫

1
T

e j k−n( )ω0t dt
0

T

∫ =
1 if k = n

0 otherwise

⎧
⎨
⎪

⎩⎪



�  Using	above	equation	we	have:	
	
	
� Which	is	equivalent	to:	

�  Dc	or	constant	component	of	x(t):	

x t( )e− jnω0t dt
0

T

∫ = Tan

an =
1
T

x t( )e− jnω0t dt
0

T

∫

a0 =
1
T

x t( )dt
T
∫



�  Consider	the	signal:	
�  The	 period	 of	 x(t)	 is	 T=2,	 so	 the	 fundamental	
frequency	is	ω0=2π/T=π.	

�  Recall	Euler’s	formula	ejθ	=	cosθ	+	jsinθ,	we	have:	

x t( ) =1+ 1
2
cos2π t + sin3π t

x t( ) =1+ 1
4
e j2π t + e− j2π t⎡⎣ ⎤⎦+

1
2 j

e j3π t − e− j3π t⎡⎣ ⎤⎦

a0 =1, a1 = a−1 = 0, a2 = a−2 =
1
4
, a3 =

1
2 j
, a−3 = −

1
2 j

and ak = 0 otherwise





�  To	 understand	 the	 validity	 of	 Fourier	 Series	
representation,	 lets	 examine	 the	 problem	 of	
approximation	a	given	periodic	signal	x(t)	by	a	linear	
combination	 of	 a	 finite	 number	 of	 harmonically	
related	complex	exponentials.		

�  That	is	by	finite	series	of	the	form:	

�  Let	eN(t)	denote	the	approximation	error;	i.e.,			

xN t( ) = ake
jkω0t

k=−N

N

∑

eN t( ) = x t( )− xN t( ) = x t( )− ake
jkω0t

k=−N

N

∑



�  The	 criterion	 that	 we	 will	 use	 is	 the	 energy	 in	 the	
error	over	one	period:	

�  To	achieve	min	EN,	one	should	define:	

�  As	N	increases,	EN	decreases	and	as	Nè∞	EN	is	zero.	
�  If	ak	è∞	the	approximation	will	diverge.	
�  Even	 for	 bounded	 ak	 the	 approximation	may	 not	 be	
applicable	for	all	periodic	signals.	

EN t( ) = eN t( )
2
dt

T
∫

ak =
1
T

x t( )e− jkω0t dt
T
∫



�  Energy	of	signal	should	be	a	finite	in	a	period:	
	
	

�  This	condition	only	guarantees	EN⎝0.	
�  It	 does	 not	 guarantee	 that	 x(t)	 equals	 to	 its	 Fourier	
series	at	each	moment	t.	

x t( )
2
dt

T
∫ <∞



�  Dirichlet	Conditions:	
�  Over	any	period	x(t)	must	be	absolutely	integrable.	
�  In	 any	 finite	 interval	 of	 time	 x(t)	 is	 of	 bounded	
variation,	i.e.,	there	are	no	more	than	a	finite	number	of	
maxima	 and	 minima	 during	 any	 single	 period	 of	 the	
signal.	

�  In	 any	 finite	 interval	 of	 time,	 there	 are	 only	 a	 finite	
number	of	discontinuities.	



�  Near	a	point	where	x(t)	has	a	jump	discontinuity,	the	
partial	 sums	 xN	 (t)	 of	 a	 Fourier	 series	 exhibit	 a	
substantial	overshoot	near	these	endpoints.		

�  An	 increase	 in	N	will	 not	 diminish	 the	 amplitude	 of	
the	 overshoot,	 although	 with	 increasing	 N	 the	
overshoot	occurs	over	smaller	and	smaller	intervals.	

�  This	phenomenon	is	known	as	Gibbs	Phenomenon.		







�  The	 Fourier	 series	 representation	 of	 a	 discrete-time	
periodic	 signal	 is	 finite	 as	 opposed	 to	 the	 infinite	
series	 representation	 required	 for	 continuous-time	
periodic	signals.	



�  A	discrete-time	 signal	 x[n]	 is	 periodic	with	period	N	
if:	x[n]	=	x[n+N].	

�  The	fundamental	period	is	the	smallest	positive	N	and	
the	fundamental	frequency	is														.	

�  The	 set	 of	 all	 discrete-time	 complex	 exponential	
signals	that	are	periodic	with	period	N	is	given	by:	

�  All	of	these	signals	have	fundamental	frequencies	that	
are	 multiples	 of	 2π/N	 and	 thus	 are	 harmonically	
related.	

ω0 =
2π
N

φk n[ ] = e jkω0n = e jk 2π /N( )n, k = 0,±1,±2,.....



�  There	are	only	N	distinct	signals	in	the	set	this	is	because	
the	 discrete-time	 complex	 exponentials	 which	 differ	 in	
frequency	by	a	multiple	of	2π	are	identical.	That	is:	

�  The	 representation	 of	 periodic	 sequences	 in	 terms	 of	
linear	combinations	of	the	sequences	Φk[n]	is:	

�  Since	 the	 sequences	Φk[n]	 are	 distinct	 over	 a	 range	 of	N	
successive	 values	 of	 k,	 the	 summation	 in	 above	 equation	
need	include	terms	over	this	range.	

φk n[ ] = φk+rN n[ ]

x n[ ] = akφk n[ ]
k
∑ = ake

jkω0n

k
∑ = ake

jk 2π /N( )n

k
∑



�  Thus	the	summation	is	on	k	as	k	varies	over	a	range	of	
N	successive	integers	beginning	with	any	value	of	k.		

� We	 indicate	 this	 by	 expressing	 the	 limits	 of	 the	
summation	as	k=<N>.	That	is:	

x n[ ] = akφk n[ ]
k= N
∑ = ake

jkω0n

k= N
∑ = ake

jk 2π /N( )n

k= N
∑



�  Assuming	x[n]	is	square-summable	i.e.,																						or	
x[n]	satisfies	the	Dirichlet	conditions.	

�  In	this	case	we	have:		

�  As	 in	 continuous	 time,	 the	 discrete-time	 Fourier	
series	 coefficient	 ak	 are	 often	 referred	 to	 as	 the	
spectral	coefficients	of	x[n].		

x n[ ]
2

n=−∞

∞

∑ <∞

x n[ ] = ake
jkω0n

k= N
∑ = ake

jk 2π /N( )n

k= N
∑ , Synthesis Equation

ak =
1
N

x n[ ]e− jkω0n
n= N
∑ =

1
N

x n[ ]e− jk 2π /N( )n

n= N
∑ , Analysis Equation



�  These	coefficients	specify	a	decomposition	of	x[n]	into	
a	 sum	 of	 N	 harmonically	 related	 complex	
exponentials.	



�  Consider	the	signal:	

� Which	 is	 the	 discrete-time	 counterpart	 of	 the	
signal																								.	

�  x[n]	is	periodic	only	if	2π/ω0	is	an	integer	or	a	ratio	of	
integers.		

x n[ ] = sinω0n

x t( ) = sinω0t




