Signal & Systems

Lecture # 11 DTFT-II

21st December 18

Properties of Discrete Time Fourier Transform

Periodicity

• The discrete-time Fourier transform is always periodic in ω with period 2π , i.e.,

$$X\left(e^{j(\omega+2\pi)}\right) = X\left(e^{j\omega}\right)$$

Linearity

 $x_1[n] \leftrightarrow X_1(e^{j\omega})$ And $x_2[n] \leftrightarrow X_2(e^{j\omega})$

• If:

 $ax_1[n] + bx_2[n] \stackrel{F}{\Leftrightarrow} aX_1(e^{j\omega}) + bX_2(e^{j\omega})$

Time Shifting & Frequency Shifting

 $x[n] \Leftrightarrow X(e^{j\omega})$

• Then:

• If:

$$x[n-n_0] \stackrel{F}{\leftrightarrow} e^{-j\omega_0 n} X(e^{j\omega})$$

and

 $e^{j\omega_0 n} x[n] \stackrel{F}{\Leftrightarrow} X(e^{j(\omega-\omega_0)})$

Conjugation & Conjugate Symmetry

 $x[n] \Leftrightarrow X(e^{j\omega})$

• Then:

• If:

$$x^*[n] \stackrel{F}{\longleftrightarrow} X^*(e^{-j\omega})$$

• If x[n] is real valued, its transform X($e^{j\omega}$) is conjugate symmetric. That is: $X(e^{j\omega}) = X^*(e^{-j\omega})$

From this, it follows that Re {X(e^{jω})} is an even function of ω and Im {X(e^{jω})} is an odd function of ω.
Similarly the magnitude of X(e^{jω}) is an even function and the phase angle is an odd function.

Conjugation & Conjugate Symmetry (cont.)

• Furthermore,

 $Ev\{x[n]\} \stackrel{F}{\leftrightarrow} \operatorname{Re}\{X(e^{j\omega})\}$ and $Od\{x[n]\} \stackrel{F}{\Leftrightarrow} j \operatorname{Im}\{X(e^{j\omega})\}$

Differencing & Accumulation

• Then:

• If:

$$x[n] \nleftrightarrow X(e^{j\omega})$$
$$x[n] - x[n-1] \xleftarrow{F} (1 - e^{-j\omega}) X(e^{j\omega})$$

For signal,

$$y[n] = \sum_{m=-\infty}^{n} x[m],$$

• Its Fourier transform is given as:

$$\sum_{m=-\infty}^{n} x[m] \stackrel{F}{\longleftrightarrow} \frac{1}{\left(1-e^{-j\omega}\right)} X(e^{j\omega}) + \pi X(e^{j0}) \sum_{m=-\infty}^{+\infty} \delta(\omega-2\pi k)$$

Time Reversal

 $x[n] \leftrightarrow X(e^{j\omega})$

• Then:

• If:

 $x[-n] \stackrel{F}{\longleftrightarrow} X(-e^{j\omega})$

Differentiation in Frequency

 $x[n] \Leftrightarrow X(e^{j\omega})$

• Then:

• If:

 $nx[n] \stackrel{F}{\longleftrightarrow} j \frac{dX(e^{j\omega})}{d\omega}$

Parseval's Relation

 $x[n] \Leftrightarrow X(e^{j\omega})$

• Then:

• If:

 $\sum_{n=-\infty}^{\infty} \left| x[n] \right|^2 = \frac{1}{2\pi} \int_{2\pi} \left| X(e^{j\omega}) \right|^2 d\omega$

Convolution Property

 If x[n], h[n] and y[n] are the input, impulse response, and output respectively, of an LTI system, so that,

y[n] = x[n] * h[n]

then,

$$Y\left(e^{j\omega}\right) = X\left(e^{j\omega}\right)H\left(e^{j\omega}\right)$$

Where X(e^{jω}), H(e^{jω}) and Y(e^{jω}) are the Fourier transforms of x[n], h[n] and y[n] respectively.

Multiplication Property

• It states that:

$$y[n] = x_1[n] x_2[n] \stackrel{F}{\longleftrightarrow} Y(e^{j\omega}) = \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\omega}) X_2(e^{j(\omega-\theta)}) d\theta$$

Properties of DTFT

PROPERTY	SEQUENCE	FOURIER TRANSFORM
	<i>x</i> [<i>n</i>]	$X(\Omega)$
	$x_1[n]$	$X_1(\Omega)$
	<i>x</i> ₂ [<i>n</i>]	$X_2(\Omega)$
Periodicity	x[n]	$X(\Omega+2\pi)=X(\Omega)$
Linearity	$a_1 x_1[n] + a_2 x_2[n]$	$a_1 X_1(\Omega) + a_2 X_2(\Omega)$
Time shifting	$x[n-n_0]$	$e^{-j\Omega n_0}X(\Omega)$
Frequency shifting	$e^{j\Omega_0 n}x[n]$	$X(\Omega - \Omega_0)$
Conjugation	$x^*[n]$	$X^*(-\Omega)$
Time reversal	x[-n]	$X(-\Omega)$
Time scaling	$x_{(m)}[n] = \begin{cases} x[n / m] & \text{if } n = km \\ 0 & \text{if } n \neq km \end{cases}$	$X(m\Omega)$
Frequency differentiation	nx[n]	$j \frac{dX(\Omega)}{d\Omega}$
First difference	x[n] - x[n-1]	$(1-e^{-j\Omega})X(\Omega)$

Properties of DTFT (cont.)

Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\pi X(0)\delta(\Omega) + \frac{1}{1 - e^{-j\Omega}}X(\Omega)$
		$ \Omega \leq \pi$
Convolution	$x_1[n] * x_2[n]$	$X_1(\Omega)X_2(\Omega)$
Multiplication	$x_1[n]x_2[n]$	$\frac{1}{2\pi}X_1(\Omega)\otimes X_2(\Omega)$
Real sequence	$x[n] = x_e[n] + x_o[n]$	$X(\Omega) = A(\Omega) + jB(\Omega)$
		$X(-\Omega) = X^*(\Omega)$
Even component	$x_e[n]$	$\operatorname{Re}\{X(\Omega)\} = A(\Omega)$
Odd component	$x_o[n]$	$j \operatorname{Im} \{X(\Omega)\} = jB(\Omega)$
Parseval's theorem	<i>∞</i>	
	$\sum_{n=-\infty}^{\infty} x_1[n] x_2[n] = \frac{1}{2\pi} \int_{2\pi} X_1(\Omega) X_2(-\Omega) d\Omega$	2
	$\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{2\pi} X(\Omega) ^2 d\Omega$	

Common Fourier Transform Pairs

<i>x</i> [<i>n</i>]	$X(\Omega)$	
$\delta[n]$	1	
$\delta(n-n_0)$	$e^{-j\Omega n_0}$	
x[n] = 1	$2\pi\delta(\Omega), \Omega \leq \pi$	
$e^{j\Omega_0 n}$	$2\pi\delta(\Omega-\Omega_0), \Omega , \Omega_0 \le \pi$	
$\cos \Omega_0 n$	$\pi[\delta(\Omega - \Omega_0) + \delta(\Omega + \Omega_0)], \Omega , \Omega_0 \le \pi$	
$\sin \Omega_0 n$	$-j\pi[\delta(\Omega-\Omega_0)-\delta(\Omega+\Omega_0)], \Omega , \Omega_0 \le \pi$	
u[n]	$\pi \delta(\Omega) + \frac{1}{1 - e^{-j\Omega}}, \Omega \le \pi$	
-u[-n-1]	$-\pi\delta(\Omega)+\frac{1}{1-e^{-j\Omega}}, \Omega \leq \pi$	
$a^{n}u[n], a < 1$	$\frac{1}{1-ae^{-j\Omega}}$	
$-a^{n}u[-n-1], a > 1$	$\frac{1}{1-ae^{-j\Omega}}$	

Common Fourier Transform Pairs (cont.)

$$|1 - de|$$

$$(n+1) a^{n} u[n], |a| < 1$$

$$a^{|n|}, |a| < 1$$

$$x[n] = \begin{cases} 1 & |n| \leq N_{1} \\ 0 & |n| > N_{1} \end{cases}$$

$$\frac{\sin Wn}{\pi n}, 0 < W < \pi$$

$$\sum_{k=-\infty}^{\infty} \delta[n-kN_{0}]$$

$$M^{1-ae} = \begin{pmatrix} 1 & \frac{1}{(1-ae^{-j\Omega})^{2}} \\ \frac{1-a^{2}}{1-2a\cos\Omega + a^{2}} \\ \frac{\sin\left[\Omega\left(N_{1} + \frac{1}{2}\right)\right]}{\sin\left(\Omega/2\right)} \\ \frac{\sin(\Omega/2)}{\sin\left(\Omega/2\right)}$$

Example #1

• Consider the signal: $x[n] = \delta[n] + \delta[n-1] + \delta[n+1]$

• Solution:

$$X(e^{j\omega}) = \sum_{n=-\infty} x[n]e^{-j\omega n}$$

 $= \sum_{n=-\infty} \left(\delta[n] + \delta[n-1] + \delta[n+1] \right) e^{-j\omega n}$

 $=\sum_{n=-\infty}^{\infty}\delta[n]e^{-j\omega n}+\sum_{n=-\infty}^{\infty}\delta[n-1]e^{-j\omega n}+\sum_{n=-\infty}^{\infty}\delta[n+1]e^{-j\omega n}$

 $X(e^{j\omega}) = 1 + e^{-j\omega} + e^{j\omega} = 1 + 2\cos\omega$

Example #2

 Given that x[n] has Fourier transform X(e^{jω}), express the Fourier transforms of the following signals in terms of X(e^{jω}), by using the Fourier transform properties:

• (a):
$$x[n] = x[1-n] + x[-1-n]$$

• (b): $x[n] = (n-1)^2 x[n]$

Systems Characterized by Linear Constant-Coefficient Difference Equations

Linear Constant-Coefficient Difference Equations

 A general linear constant-coefficient difference equation for an LTI system with input x[n] and output y[n] is of the form,

$$\sum_{k=0}^{N} a_{k} y[n-k] = \sum_{k=0}^{M} b_{k} x[n-k]$$

• Which is usually referred to as Nth-order difference equation.

If x[n] = e^{jωn} is the input to an LTI system, then the output must be of the form H(e^{jω})e^{jωn}. Substituting these expressions into above equation and performing some algebra allow us to solve for H(e^{jω}).

Linear Constant-Coefficient Difference Equations (cont.)

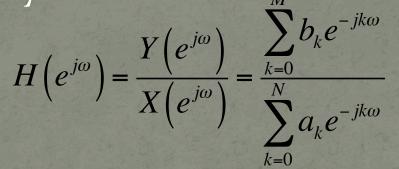
• Based on convolution, above equation can be written as: $H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$

 Applying the Fourier transform to both sides and using the linearity and time-shifting properties we obtain the following expression:

$$\sum_{k=0}^{N} a_{k} e^{-jk\omega} Y(e^{j\omega}) = \sum_{k=0}^{M} b_{k} e^{-jk\omega} X(e^{j\omega})$$

Linear Constant-Coefficient Difference Equations (cont.)

• Or equivalently



• The frequency response of the LTI system can be written down by inspection as well.

Example #3

• Consider a causal LTI system that is characterized by the difference equation:

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n]$$

• And let the input to this system be:

$$x[n] = \left(\frac{1}{4}\right)^n u[n]$$

• Find y[n].

The End